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The dipolar interaction. The direct dipolar interaction of two magnetic dipoles, m1 and

m2, separated by a distance r reads

U =
1

r3

(
m1 ·m2 − 3(m1 · r̂)(m2 · r̂)

)
. (4.1)

In order to estimate its magnitude, we take m1 ' m2 ' gµB ' e~/mc. Then, using

a0 = ~2/me2 and α = e2/(~c) = 1/137,

U '
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)2 1
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=
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e2
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)3 e2
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)3( 1

137

)2

Rd . (4.2)

Since 1 Ry=13.6 eV and r is about several Bohr radii, this energy is about 10−4eV (which

amounts to a temperature of a few degrees), and is far too small small to explain the typical

magnetic energies.

∗ ∗ ∗ exercise: What is the preferred direction of two identical magnetic dipoles interacting

via the dipolar interaction? [Answer: The dipolar interaction is minimal when the two

dipoles are parallel to one another and to the radius vector r. If they are perpendicular to

the radius vector, then they prefer to be anti-parallel.]

The exchange energy. Let us consider two electrons interacting via the Coulomb inter-

action alone (namely, we neglect spin-dependent interactions like the spin-orbit interaction,

etc.). The Hamiltonian reads

H(1, 2) = − ~
2

2m

∂2

∂r2
1

− ~2

2m

∂2

∂r2
2

+ V (r1) + V (r2) +
e2

r12

, (4.3)
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where V (r) is due to the ions, and r12 = |r1 − r2|. When there are two independent orbital

states, ψa(r) and ψb(r), the orbital part of the two-electron wave function can be

Ψ(1, 2) =
1√
2

(
ψa(1)ψb(2) + ψb(1)ψa(2)

)
, singlet ,

Ψ(1, 2) =
1√
2

(
ψa(1)ψb(2)− ψb(1)ψa(2)

)
, triplet . (4.4)

Let us now calculate the total energy of the system. We have

∫ ∫
dr1dr2Ψ

∗(1, 2)HΨ(1, 2) =

∫ ∫
dr1dr2|ψ1(a)ψb(2)|2H

±
∫ ∫

dr1dr2ψ
∗
a(1)ψ∗b (2)ψa(2)ψb(1)H . (4.5)

(We have used here the fact that the Hamiltonian is invariant under the change 1 ↔ 2.)

The integral

Jab =

∫ ∫
dr1dr2ψ

∗
a(1)ψ∗b (2)ψa(2)ψb(1)H , (4.6)

is called the exchange integral. When ψa is orthogonal to ψb, only the Coulomb interaction

contributes to this integral. Hence

Jab =

∫ ∫
dr1dr2ψ

∗
a(1)ψ∗b (2)ψa(2)ψb(1)

e2

r12

. (4.7)

Let us denote

ρ(r) = ψa(r)ψ
∗
b (r) . (4.8)

Then the exchange integral can be written in the form

Jab =

∫ ∫
dr1dr2ρ

∗(r1)
e2

r12

ρ(r2) . (4.9)

Let us further denote

φ(r) =

∫
dr′

e2

|r− r′|ρ(r′) . (4.10)

By its definition, φ(r) satisfies the Poisson equation,

4φ(r) = −4πe2ρ(r) . (4.11)
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Using this in Eq. (4.9), we have

Jab = − 1

4πe2

∫
dr(4φ∗(r))φ(r) . (4.12)

We can now use Green’s theorem (in other words, integrate by parts). Since the surface

contribution vanishes as |r| → ∞, we obtain

Jab =
1

4πe2

∫
dr|∇φ(r)|2 > 0 . (4.13)

It follows that the exchange energy is positive.

Returning to the expression for the energy, Eq. (4.5), we see that the spatial integration in

the first term there can be written in the form

∫ ∫
dr1dr2|ψa(1)ψb(2)|2H =

∫
dr|ψa(r)|2H0 +

∫
dr|ψb(r)|2H0

+

∫ ∫
dr1dr2|ψa(1)ψb(2)|2 e2

r12

≡ Ea + Eb + Kab . (4.14)

The term Kab is called the Coulomb integral. Here, H0 = −(~2/2m)4 + V (r) is the single

electron part of the Hamiltonian.

In summary, we have found that the energy of the two electron system, which is described

by a spin-independent Hamiltonian is given by Ea + Eb + Kab + Jab when the two electrons

are in the symmetric spatial wave function, and by Ea + Eb + Kab − Jab when they are in

the anti-symmetric one. This property of the two electron system can be written in terms

of spin operators, in the form

H = Ea + Eb + Kab − 1

2
Jab(1 + 4sa · sb) . (4.15)

In order to prove this statement, we note that

2sa · sb = (sa + sb)
2 − s2

a − s2
b = s2 − 3

2
. (4.16)

In the singlet state, s = 0, and hence sa · sb = −3/4; in the triplet state, s = 1 (and

s2 = s(s + 1) = 2), and therefore sa · sb = 1/4.

The Heisenberg interaction is based on the above picture. It reads

H = −
∑

〈ij〉
Jijsi · sj . (4.17)
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This Hamiltonian is the basis for most of the investigations in magnetism. When J is

positive, the ground state of the system is ferromagnetic: the spins are aligned all in the

same direction. When J is negative, the system has an antiferromagnetic order.

Super-exchange. Consider an atom with a single orbital (i.e., a single energy level and a

single wave function). When this level is empty, the energy is zero; if one electron is on the

level, then the energy is ε; and if two electrons occupy the atom, then the energy is 2ε + U ,

where U represents the Coulomb repulsion. We denote the single-electron wave function by

|R〉.

Now consider a molecule made of two such atoms. We denote the wave function of the

electron when it is on the second atom by |R′〉, and allow for quantum mechanical tunneling

processes between the two atoms, such that the single-electron Hamiltonian, denoted h, has

the matrix elements

〈R|h|R′〉 = 〈R′|h|R〉 = −t , (4.18)

in addition to

〈R|h|R〉 = 〈R′|h|R′〉 = ε . (4.19)

∗ ∗ ∗ exercise: Find the eigen energies and the eigen functions of the molecule when the

electrons are spinless.

When the two electrons are in the singlet state, their spatial (symmetric) wave functions are

Φ0 =
1√
2

(
|R〉|R′〉+ |R′〉|R〉

)
, Φ1 = |R〉|R〉 , Φ2 = |R′〉|R′〉 . (4.20)

The matrix of the Hamiltonian in the singlet subspace is (assuming that 〈R|R′〉 = 0,

〈R|R〉 = 〈R′|R′〉 = 1)




H00 H01 H02

H10 H11 H12

H20 H21 H22


 =




2ε −√2t −√2t

−√2t 2ε + U 0

−√2t 0 2ε + U


 . (4.21)

This Hamiltonian matrix has the eigen energies

2ε + U , 2ε +
U

2
±

√
U2

4
+ 4t2 , (4.22)
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and therefore the ground state of the singlet state has the energy

Esing
g = 2ε +

U

2
−

√
U2

4
+ 4t2 ' 2ε− 4t2

U
, for t ¿ U . (4.23)

Namely, the electrostatic energy reduces the total energy of the two electrons. However,

this forces them to have opposite spins. In other words, the electrostatic energy favors the

antiferromagnetic state.

∗ ∗ ∗ exercise: Derive explicitly Eqs. (4.21) and (4.22). Find the exact ground state of

the singlet. Plot the probability to find the two electrons on the same atom in this state as

function of U/t and explain the result.

Curie-Weiss law and ferromagnetism. Let us first re-visit the derivation leading to the

Curie law. When we suppose that each atom behaves like a small magnet of moment µ, then

in the magnetic field H it acquires the energy −µ ·H. We further assume that each atom

is independent of its neighbors and can rotate freely under the effect of the temperature.

Since the atom is localized, it satisfies the Boltzmann statistics, and therefore its average

moment is given by

〈µ〉 =

∫
dΩµeβµ·H

∫
dΩeβµ·H , (4.24)

where dΩ is the element of the solid angle for rotation. The total magnetization of a system

of N atoms will be N〈µ〉, and its magnetic susceptibility will be in general a tensor (the

derivative of µi with respect to Hj). Confining ourselves to cubic symmetry, we find

χ = N
〈 ∂µ

∂H

〉
' N

kBT
〈µ · µ〉 =

1

3

N〈µ2〉
kBT

, for small enough H . (4.25)

This is the Curie law.

∗∗∗ exercise: Find the temperature dependence of the total magnetization of the system

by using Eq. (4.24) in the limit of small magnetic fields, and compare with the previous

results.

In many cases the interaction between neighboring atoms cannot be ignored. To account

for this effect approximately, one may introduce an internal magnetic field exerted on each

atom by its neighbors. This field is called the Weiss field (or sometimes molecular field). It

is plausible to assume that the internal field is proportional to the average of the magnetic
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moment, and that the proportionality constant reflects the strength of the inter-atom inter-

actions. In other words, λ is related to the exchange coupling J , see Eq. (4.17). Hence, the

internal magnetic field is

HI = λN〈µ〉 . (4.26)

The total field acting on each atom is now H + HI , and therefore we find

N〈µ〉 =N

∫
dΩµeβµ·(H+HI)

∫
dΩeβµ·(H+HI)

' N

kBT
〈µµ(H + HI)〉

' N

kBT

〈µ2〉
3

(H + λN〈µ〉) . (4.27)

Let us define an effective temperature, Θ,

Θ ≡ λN〈µ2〉
3kB

. (4.28)

Then the susceptibility is

χ = N
〈 ∂µ

∂H

〉
=

N〈µ2〉
3kB(T −Θ)

. (4.29)

This is the Curie-Weiss law for the magnetic susceptibility of a ferromagnet. In partic-

ular, the susceptibility diverges as the temperature approaches the ferromagnetic critical

temperature, (the Curie temperature), which in our approximation is Θ.

In order to show that Θ is indeed the critical temperature of our model, we need to return to

the full calculation of the magnetic moment. There we have found that the total magnetiza-

tion, i.e., N〈µ〉, is given by the Brillouin function, BJ(x) = 2J+1
2J

coth
(

(2J+1)x
2J

)
− 1

2J
coth

(
x
2J

)
,

with x = H/kBT . For the case J = 1/2 the Brillouin function reduces to tanh, and hence

N〈µ〉 = Ntanh
(H + HI

kBT

)
= Ntanh

(H + λN〈µ〉
kBT

)
. (4.30)

Let us now consider this equation when the applied magnetic field H is zero. Obviously,

〈µ〉 = 0 is a solution for this equation. However, there might be another solution: since

tanhx ' x − x3/3 for small x, we see that as long as the temperature is less than λN/kB

(which is up to a numerical constant equal to Θ above), we can have a nonzero solution for

the magnetization. In other words, the system sustains a spontaneous magnetic order below

some critical temperature.
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Antiferromagnetism. We may view an antiferromagnet as consisting of two sublattices.

At zero temperature, the average magnetizations of the two sublattices are anti parallel to

one another.

At finite temperatures, the internal fields acting on the two sublattices are different. The

internal field acting on an atom belonging to the ‘-’ sublattice is

H− = λNµ+ , (4.31)

while the internal field on on an atom of the ‘+’ sublattice is

H+ = λNµ− , (4.32)

where now λ is negative.

At sufficiently high temperatures, we can try to perform the same calculation as the one in

Eqs. (4.27), (4.28), and (4.29). This will give us (note that N is the number of atoms in

each sub lattice)

N〈µ+〉 '
N

kBT

〈µ2〉
3

(H + λN〈µ−〉) ,

N〈µ−〉 '
N

kBT

〈µ2〉
3

(H + λN〈µ+〉) . (4.33)

Adding the two equations, we find that we have exactly the same result as before. However,

in the present case, λ is negative, and therefore it is better to define

ΘN ≡ −λN〈µ2〉
3kB

, (4.34)

to obtain

χ = N
〈 ∂µ

∂H

〉
=

N〈µ2〉
3kB(T + ΘN)

. (4.35)

The paramagnetic susceptibility of an antiferromagnet is smaller than the one of a ferro-

magnet. The temperature ΘN is called the Néel temperature.

Spin waves. Let us consider the Heisenberg Hamiltonian for a ferromagnet,

H = −
∑

〈``′〉
J``′S` · S`′ . (4.36)
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We now assume that in the ground state of our system, all spins are aligned: they have their

maximal possible value of Sz.

Sz
` |S〉` = S|S〉` . (4.37)

The ground state itself is the product,

|0〉 = |S〉1|S〉2 . . . |S〉N . (4.38)

We now introduce the spin-deviation operators, S±, (dropping the subscript ` for brevity)

S± = Sx ± iSy . (4.39)

We can show that the application of these operators on the eigen states of Sz gives another

eigen state of Sz,

Sz
(
S+|S〉

)
= Sz(Sx + iSy)|S〉 =

(
SxSz + iSy + i[SySz − iSx]

)
|S〉

= S+Sz|S〉+ S+|S〉 = (S + 1)
(
S+|S〉

)
. (4.40)

In a similar fashion,

Sz
(
S−|S〉

)
= (S − 1)

(
S−|S〉

)
. (4.41)

Using the spin-deviation operators, we re-write the Heisenberg Hamiltonian in the form

H = −
∑

〈``′〉
J``′

(
Sz

` S
z
`′ +

1

2
[S+

` S−`′ + S−` S+
`′ ]

)
. (4.42)

As a result we see that

H|0〉 = −
∑

〈``′〉
J``′S

2|0〉 , (4.43)

namely, only the product of Sz in Eq. (4.42) contributes to the ground state energy.

What are the excitations of this system? One may think that an excited state is a state in

which one spin deviates from being maximally aligned. However, this is not an eigen state,

because the operation of S−` S+
`′ will shift the deviation to the nearest neighbor. In order to

specify the excited states, we use the following description. Let us denote by |n〉 a state

which has n deviations (n < 2S). Operating on this state with S+ will reduce n by 1, and
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operating with S− will increase it by 1. We see that in some sense S+ plays the role of an

annihilation operator, denoted a, and S− plays the role of a creation operator, denoted a†.

In fact, we know that

[S+, S−] = i[Sy, Sx]− i[Sx, Sy] = 2Sz. (4.44)

So, if we define

a =
S+

√
2Sz

, a† =
S−√
2Sz

, (4.45)

we find that the creation and annihilation operators obey the usual commutation law,

[a, a†] = 1 . (4.46)

The definition (4.45) is not really proper, since Sz is also an operator. However, for large

enough values of S, we can replace Sz by its average, S. This means that we may consider

only small deviations from the ground state (and therefore this theory is not valid at all for

spins 1/2).

Now the spin deviation states are eigen states of a†a, and we have

a†a|n〉 = n|n〉 , a|n〉 =
√

n|n− 1〉 , a†|n〉√n + 1|n + 1〉 , (4.47)

and

Sz = S − a†a . (4.48)

Putting all this back into the Hamiltonian, Eq. (4.42), we find

H ' −
∑

〈``′〉
J``′

(
[S − a†`a`][S − a†`′a`′ ] + S[a†`a`′ + a`a

†
`′ ]

)

' −
∑

〈``′〉
J``′

(
S2 + S[a†`a`′ + a`a

†
`′ − a†`a` − a†`′a`′ ]

)
. (4.49)

The first (non operator) term here is just the ground state, so we drop it when considering

the excitations.

The Hamiltonian now resembles the one of lattice vibrations. As in that case, it is expedient

to introduce the Fourier transforms

a` =

√
1

N

∑
q

aqe
iq·R` , a†` =

√
1

N

∑
q

a†qe
−iq·R` . (4.50)
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(R` is the radius-vector to site ` of the lattice.) Then, taking into account that in Eq. (4.49)

` and `′ are nearest neighbors and that J``′ depends only on |R` −R`′ | we find

H =
∑
q

(∑
Rnn

2SJ(1− e−iq·Rnn)
)
a†qaq , (4.51)

in which Rnn is the radius-vector to the nearest neighbors.

Since the form (4.51) is exactly the same as encountered in the theory of lattice vibrations,

we can simply use all the know results for this problem as well. Noting that the dispersion

of the spin wave excitations,

ωq =
∑
Rnn

2SJ(1− e−iq·Rnn) ' 2SJq2a2 , (4.52)

we can find the average occupation number of each mode,

〈a†qaq〉 =
1

eβωq/kBT − 1
, (4.53)

is given by the Bose distribution. It follows that the temperature dependence of the mag-

netization, M(T ), is given by NS −∑
q〈a†qaq〉.

∗∗∗ exercise: Find an explicit form for the temperature dependence of the magnetization

using the spin wave theory. Find the specific heat of the spin wave excitations.
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