Helium and exchange symmetry

Atoms with 2 valence electrons: He and
the group Il element (second coulomb In
the periodic table) — Berilium Magnesium,
Calcium, etc.

* These atoms have exchange energy.
* We shall use He as an example.



Exchange symmetry:
e Consider a multi electron atom with N
electrons:

* The wave function — depends on the
coordinates of the electrons:
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* Electrons are indistinguishable. The many

electrons wave function must have
exchange symmtery:
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Thus the wavefunction will be
elther symmetric or antisymmetric:

V(ry,ro, - ,TK,TL, " TN) =
+ W(ry,ro, -+ , L, TK, " TN)
* +sign bosons; - sign Fermions

* Electrons with spin %2 are Fermions. The anti
symmetric wavefunction is the basis for the
Pauli exclusion principle,



Helium wavefunctions:

« The He wavefunction is a multielectron
atom with n=2.

(a)

* The wavefunction is a multiplication of the
spatial and the spin wavefunctions:

W = Wspatial (T'1, 72) Yspin



The total wavefunction must be
antisymmetric.

* There are 2 possible combinations:
Recall: Both the spatial and the spin
wavefunction, are multiplications of 2
single electron wavefunctions.

Wspatial Yspin

symmetric anti-symmetric (S = 0)

anti-symmetric symmetric (S =1




The spin wavefunctions are

~_dependenton S:
* The triplet wavefunctions are symmetric

* The singlet wavefunction is antisymetric:

Spin wave function | symmetry | Mg

T1 T2 + +1
%f'fl Lo+ L1 T2) + 0
(11 la =1 T2) — 0

11 le + —1

* The second WF belongs to a triplet. The
third Is a singlet.



The orbital wavefunction:

* The ground state is 1s? — necessarily
symmetric.

* |In the excited states one or 2 electrons are
In a higher state — characterized by n,l.

* The spatial part of He wavefunctions has
the form: 1L_.1{'I'1 Jl 'y fg(‘l'g}

* In which A, B marks a pair of n,l values.

* Thus the spatial wave function (with
exchange) Is:
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Cont.

 1/7/2 is a normalization factor, +, - refer to
symmetric and antisymmetric wavefunction,

respectively.

* Thus, the total wavefunction must be the
multiplication of the spatial and the spin parts:
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The spin and the spatial parts of the
wavefunction — are not independent!!!

* The Pauli exclusion principle: In the
ground state two electrons in 1s?

* In the spatial wavefunction, when A and B
are identical — The asymmetric wave
function Is zero.

* This Is a demonstration of the Pauli
exclusion principle, and the rule
(connected to Hund’s law) that L+S must
be even. (when L=0, S=1 - is not allowed)

 Namely S must be 0 — singlet state.



Slater determinants
* The antisymmetric wave function can be

written as a determinant:

A 1| uwalry) wualrs)
Hspatia E/E uf:'-"-r.'-i“l} ILHU‘;}}
* This can be generalized in atoms with
many electrons to:

ua (1) ua(2) -+ ua(N)

1 ug(l) wug(2) --- ug(N)
V=— - - -
v N/ : ; . i
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* The determinant is O If 2 rows are equal.



The exchange energy:
* For He atom, the Hamiltonian is: (not including

fine structure).
: h? 2¢? h? 2¢? e?
H = B v + ,
( 2m 1 il??f.]-rl) T ( 27m 2 -1“*15.;}?@) dmeqrio

* The Coulomb repulsion terms were treated
before by the central field approximation.

* In He there is one such term. this enables a
more systematic solution: Generally speaking
the energy Is given by the expectation value:

L | * T . 3. 13,
— / /‘T'-'.'E-‘-l'_lﬂtiéﬂ H ?— :'E-['Jé-‘s_lii-'l,] d I 1{-1 .F::}




For He, the Hamiltonian Is split

e As: H=H;+H,+Hi.
. . . h? 2e?
Where: g, - _Tyg2__=¢
2m AmwegT;
L
and Hio = -

il’aTsI‘(]. m — T

The energy Is split to 3.
EF=FEi+E;+ Eis
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The first 2 terms are the
hydrogenic energy terms:

» Namely: ~ EitFe=——4" =5

* The third term is the coulomb repulsion
energy:. E

€ .- 1 43
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» Detailed evaluation of the exchange integral:
We restrict ourselves to terms: (1s,nl)
that include the excited states. Since we are

Interested In spectroscopy.




The spatial part of the wavefunction:

W(ry,re) = ;E(Tttlglf?'ﬁlﬂnz{f*z) Hn.z{f*l,ﬁulslf?'zfl)

* The + sign related to singlet (5=0) and the —
sign to triplet (S=1).
 First we evaluate H;:
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The integral splits to 4 separate
Integrals:
* Opening the parentheses
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Recall:

Uy (71) 18 an eigenstate of ﬂrl
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Similarly for E.:
* We get:
B, — f/m*ﬂ*gmdﬂrldﬁrg:
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Evaluation of the Column
repulsion term:
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Again we get 4 Integrals:
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The total energy

- of the configuration (n1ly, nals)

AR 1R
E(nily, nals) = — EH — EH FDap £ JaB

* The exchange splitting is not small (in
contrast to other spin related interactions).

* As an example J,g for the first He excited
state (1s2s configuration) is 0.8eV.

 Recall:

vap(ri,ra) = ?('H-_-af?'lj'u-fff?‘z] + u H{'F‘lﬁﬂ_-a{f*zﬁj
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Looking at this formula:

» If we put r;=r, we get Pspatial = U
for the anti-symmetric wave function.

The two electrons have a low probabillity of
coming close together Iin the triplet state —
This reduce the Column repulsion. In the

singlet state the probability Is larger —
larger Column repulsion.



The exchange energy Is commonly
written as:
* AEexchange =" ‘]Sl.SZ

 Namely, when the spin are aligned (anti
aligned) — the energy goes down (up).

* This explains ferromagnetism — The spins
prefer to be parallel.

* The dipole - dipole interactions are
negligible compared to the exchange
Interactions.



The He term diagram:

 Term can be evaluated if we know the
direct and exchange Coulomb energies:

 The Ground state is the 1s? term. It can be
only in the S=0 configuration. Thus:

o ARy 4Rpy
E(l?) = -—5 - (Dlﬁg—.flﬁg)
= —h4.4eV —5H4.4eV + 298V

= —79.0eV .

* The direct and exchange energies are
determine from the first ionization
potential.



lonization potentials:
 The excited states of He:

He™
0

544 eV

oy AT | e
—54.4 ¢V I =
o
<
r\.

—79.0 eV

WV He (1s%)

o After the first ionization, we are left with
the hydrogenic atom 1S?* with energy

—~Z*Ry = —54.4eV which is the second
lonization potnetial.



Cont.

* This means that the ground state is -79
eV. Thus using

: ARy  4Rp
E(1s?) = ——F ——F+ (Die + 1)
= —544eV —54.4eV +208eV
= —79.0eV .

. We get (Dlﬁz + th) = 29.8eV.



Optical spectra of He:

* We do not consider two electrons jump —
Into a 2s2s state. Such a jump will be into
an energy 2 x 1Ry (-20.4eV) - larger
than the first ionization energy) -54.4eV.

he excited states are given below:
Ground state 1s 1s (= 1s?)

First excited state 1s 25

Second excited state 1s 2p
Third excited state Is 3s
Fourth excited state 1s 3p

lonization limit 1s ool



Each excited state has a singlet
and triplet states (S=0; S=1)

¢« S=0 states — show the normal Zeeman effect
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The energy terms approach —R,/n?

Selection rules AS=0 forbid transitions between
singlet and triplet states.

Relaxation from 2S to 1S is forbidden by the
selection rule: Al=%1.

Relaxation from the triplet 1S2S configuration
Is forbidden by the selection rule AS=0.

These states are metastable — very long
relaxation times.

These behavior is characteristic also to other
atoms of group Il element (Be, Mg. Ca)



