Homework 4

Question 1

Find the potential outside a sphere of radius R, which has the boundary conditions ® = ¢
on one half and ® = ¢, on the other half, with V; 5 constants.

Solution

The general solution to Laplace’s equation in spherical coordinates in the case of azimuthal independence is
given by
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Outside the sphere, r > R the potential must be finite, so 4; = 0.
Oun the surface of the sphere r = R,
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Using the orthogonality relation
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Since Legendre polynomials satisfy Py(pu) = (—1)'Pi(—p),
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and I} = fn Py{p)d(pe), this integral may be evaluated by integrating both sides of the legendre equation:
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Notice that if 4 is an even function, P is an odd function, so F/{0) = 0 and finally B; = 0 for even [
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The first few legendres are Py = p, Py = %(5;:3 — 3pt). The first two terms in the solution are then
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Question 2

Find the electric potential inside of a cylinder of radius a (coaxial with the Z axis) and height
h, where the bases (z = 0, h) are grounded and the potential on the shell is given by ® =V

for0 <y <mand ® = -V for m < ¢ < 27.



Solution
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Separating variables, one looks solutions in the form ¢(r, ¢, 2) = R(r)Z(z)®(¢), where the func-
tions R, Z, and ® satisfy equations
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One has to choose m to be integer so that the solution is 2x-periodic in ¢. The homogeneous
boundary conditions at =z = 0 and | are satisfied by choosing k& = =l/h, where [ is integer. The
non-singular solution to eq. (4) is the modified Bessel function i = I,,.(kr).

Now the solution is written as
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The constants are found from the boundary conditions at r = a. Multiplying eq. (6) by
sinmegsin(mlz/h) and making use of the orthogonality conditions, f; sinmasinm'zdr = 36,
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The lhs vanishes for even m and [, and so does (. For odd m and [, one gets
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The similar caleulation shows that for any m and [, D, = 0. Now one can finally present the
solution in the form
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Question 3

A spherical shell with radius a is divided to an even number of segments, 2n, by a set of
planes; their common line of intersection is the Z axis and they are distributed uniformly in

the angle ¢ (see figure). The segments are held at fixed potentials £V, alternately.

Radius a

y (p=m/2)

1. Write the potential inside the shell as an expansion in spherical coordinates, and write

the integral expression for the coefficients.

2. Show that the coeflicients of Yy, vanish unless ¢ + m is even. Hint: Think about the
symmetry z — —z of the setup, and the property of P;” under cos — — cos@.

3. Show that the setup has a symmetry of the form
P () = AP (p+ Ap),

and find the constant A.

4. Determine for which values of m the coefficient of Yy, in the expansion vanish, and write

the ones that do not vanish as an integral over cos 6.

Solution

1. The solution to the Laplace equation (without azimuthal symmetry!) is
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and since we want to avoid a divergence at r = 0 we set By, = 0 and thus
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We find the coefficients by equating across r = a,
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where the boundary condition is

+V if 225 < < 2X(j + 1) for even j
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We use the orthogonality of Yy, and multiply by [ Y/ (0, ¢)sinfdQ. We obtain the

coefficients in integral form,
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. We express the parity property z — —z in spherical coordinates as cosf — — cos@.

Therefore,
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where we used P, (—z) = (=)' P, (z), — cos = cos (1 — 6) and
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Therefore we see that the only terms in the expansion which satisfy the symmetry of the

system (i.e. Yo, (0,¢) = Yo (7 — 0, )) are the ones with ¢ + m even.



3. The boundary condition dictates that

2T
@ = —@ _
() = ~Tofp+ =),
and thus A = —1. Since the Laplace equation is invariant under this transformation (i.e

if ®(r,0,¢) is a solution, so is ®(r,6,¢) = —®(r, 0, + Ap)), from uniqueness of the

solution we obtain
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This is the sum of a geometric series: For —e™™/™ = 1 we find
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meaning that Ay, = 0 unless m = (2k — 1) n for k € Z. Therefore, the full integral for



the coeflicients is
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Question 4

A two-dimensional “pizza slice” geometry is defined in polar coordinates by the surfaces ¢ =

0, = p and p = a, as indicated in the sketch.
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Use separation of variables in polar coordinates to show that the Dirichlet Green’s function

inside the slice (0 < ¢ < 3, 0 < p < a) can be written as
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Guidance: Recall the method used in question 4 of HW3, and use the completeness relation
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Separating the solution to a radial function g, (p,p’) and a suitable angular part, choose

appropriate boundary conditions. Show that g,, is symmetric under p <> p/, and use that to

prove that the radial solution must be
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Solution

The Green function solves the Poisson equation
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where we have seen many times that the basis of sines satisfies the completeness relation
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Therefore,
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and we can expand the Green function in terms of sin (mmy/f) sin (mny'/fB):
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Plugging this form into the polar Poisson equation, we find for the radial function

10 OGm Jm [ M 2 8T
-~ ) 2 =——9
pOp (p ap) p? < B ) Bp (b =) @

We separate the problem to p = p’ and p # p': For p # p’ we have the simpler equation
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for which the general solution (as you’ve seen in class) is
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For a Dirichlet problem, we choose the boundary conditions to be vanishing on all the bound-

aries (p = a and ¢ = 0, 3). Therefore,

We wish to keep the radial solution regular at p < p/, and thus we choose
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We can now use the symmetry p <> p’ to obtain the general solution; Switching the variables,

we find the radial function
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with C,, a constant independent of p, p/. Therefore, the solution in both regions has the form
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Finally, we use the discontinuity caused by the delta function,
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and obtain the coefficients C),,
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Therefore, the complete solution is
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as desired.
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