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1 The Geodesic Deviation Equation

1.1 Deviation Equation in Newtonian Gravity

Consider two nearby particles moving only under the influence of gravity. In an
inertial frame the equation of motion for the position xi (t) of the first particle
is

d2xi

dt2
= −δij ∂φ

∂xj
(
xk

)
(1)

Let Si be a small separation vector between the two particles, Si � 1. The
position of the second particle is xi (t)+Si (t). We write its equation of motion,
and approximate to linear order in Si

d2
(
xi + Si

)
dt2

= −δij
∂φ

(
xk + Sk

)
∂xj

≈ −δij ∂φ
∂xj

(
xk

)
− δij

(
∂

∂xk
∂φ

∂xj

)(
xk

)
Sk

(2)
Subtracting (1) from (2) yields�



�
	d2Si

dt2
= −δij ∂2φ

∂xk∂xj
Sk (3)

Newtonian devia-

tion equation

Equation (3) is the Newtonian deviation equation. The Hessian of the scalar
potential field ∂2φ

∂xk∂xj
is called the tidal tensor. It determines the tidal forces on

an extended body in a gravitational field.

1.2 The Geodesic Deviation Equation

Consider two neighboring geodesics, separated at each point by an infinitesi-
mal separation vector S (deviation between nearby geodesics), |Sµ| � 1. One
geodesic has coordinate xµ (τ) and the second has coordinate xµ (τ) + Sµ (τ).

Exercise: Find the equation for the acceleration of the separation vector.
This equation is called the geodesic deviation equation.

We denote the velocity along the first geodesic as uµ = dxµ

dτ .
The velocity of the separation, as we move along the geodesic in the direction

of the tangent u, is

V µ = (∇uS)
µ

= uν∇νSµ = uν∂νS
µ + uνΓµνρS

ρ

=
dSµ

dτ
+ Γµνρu

νSρ (4)

2



It is the “relative velocity of the geodesics”.
The acceleration of the separation , as we move along the geodesic in the

direction of the tangent u, is

Aµ = (∇uV )
µ

= uν∇νV µ = uν∂νV
µ + uνΓµνρV

ρ

=
dV µ

dτ
+ Γµνρu

νV ρ (5)

It is the “relative acceleration of the geodesics”.
Plug (4) into (5)

Aµ =
d

dτ

(
dSµ

dτ
+ uνΓµνρS

ρ

)
+ Γµνρu

ν

(
dSρ

dτ
+ Γρσλu

σSλ
)

=
d2Sµ

dτ2
+

d

dτ

(
uνΓµνρS

ρ
)

+ Γµνρu
ν dS

ρ

dτ
+ ΓµνρΓ

ρ
σλu

νuσSλ

=
d2Sµ

dτ2
+
duν

dτ
ΓµνρS

ρ + uνuλ∂λΓµνρS
ρ + uνΓµνρ

dSρ

dτ
+ Γµνρu

ν dS
ρ

dτ
+ ΓµνρΓ

ρ
σλu

νuσSλ

(6)

Now we will write the geodesic equations for the two nearby geodesics, ap-
proximate to first order in S, and subtract them. The resulting equation (for
d2Sµ

dτ2 ) will be substituted into (6), as well as the equation of the first geodesic
(for duν

dτ ).
The equation of the first geodesic xµ (τ) is

d2xρ

dτ2
+ Γρµν

dxµ

dτ

dxν

dτ
= 0 (7)

The equation of the nearby geodesic xµ (τ) + Sµ (τ) is

d2 (xρ + Sρ)

dτ2
+ Γρµν (xσ + Sσ)

d (xµ + Sµ)

dτ

d (xν + Sν)

dτ
= 0 (8)

To linear approximation in Sµ (8) becomes

d2xρ

dτ2
+
d2Sρ

dτ2
+
(
Γρµν + Sσ∂σΓρµν

) dxµ
dτ

dxν

dτ
+ 2Γρµν

dxµ

dτ

dSν

dτ
= 0 (9)

where the Christoffels in (9) are evaluated on the first geodesic, to first order in
separation Sσ

Γρµν (xσ + Sσ) ≈ Γρµν (xσ) + Sσ∂σΓρµν (xσ) (10)
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(9) can be written as

d2xρ

dτ2
+ Γρµν

dxµ

dτ

dxν

dτ
+
d2Sρ

dτ2
+ 2Γρµνu

µ dS
ν

dτ
= −∂σΓρµνu

µuνSσ (11)

Subtract (7) from (11) yields

d2Sρ

dτ2
+ 2Γρµνu

µ dS
ν

dτ
= −∂σΓρµνu

µuνSσ (12)

Also, (7) can be written as

duν

dτ
= −Γνσλu

σuλ (13)

Plug (12) and (13) into Aµ (6) yields

Aµ = −ΓνσλΓµνρu
σuλSρ + ∂λΓµνρu

νuλSρ + ΓµνρΓ
ρ
σλu

νuσSλ − ∂ρΓµνσuνuσSρ

=
(
∂νΓµσρ − ∂ρΓµσν + ΓµνλΓλσρ − ΓµρλΓλσν

)
uνuσSρ

=Rµσνρu
νuσSρ (14)

At last, we found the geodesic deviation equation�



�
	Aρ = Rρσµνu

σuµSν (15)
The geodesic de-

viation equation

where Rρσµν is the Riemann curvature tensor (its components in coordinate
basis)�



�
	Rρσµν = ∂µΓρσν − ∂νΓρσµ + ΓρµλΓλσν − ΓρνλΓλσµ (16)

Riemann curva-

ture tensor

The relative acceleration between two neighboring geodesics is proportional
to the curvature. Physically, this acceleration is interpreted as a manifestation
of gravitational tidal forces.

2 Newtonian Spacetime Is Curved

Calculate the Riemann curvature tensor of a Newtonian spacetime consisting of
a gravitational potential φ

(
xi
)
.

Consider a Newtonian spacetime (non relativistic). There are flat spatial
metric and temporal metric, but no spacetime metric. Instead, there is an
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absolute time function, giving the absolute time t at any point in spacetime.
We can use the absolute time as a parameter and write a trivial equation of
motion for t, and the equation of motion for a particle in a Newtonian static
gravitational field φ

(
xi
)
. In inertial Cartesian coordinates,

d2t

dt2
= 0 (17)

d2xi

dt2
+ ∂iφ

dt

dt

dt

dt
= 0 (18)

Repackage (17) and (18) in spacetime tensorial form as

d2xρ

dt2
+ Γρµν

dxµ

dt

dxν

dt
= 0 (19)

where the only non-vanishing Γ’s are�



�
	Γitt = ∂iφ (20)

So, a particle only under the influence of gravity is moving along geodesics
of spacetime. This is a manifestation of the equivalence principle, gravity is a
geometry of spacetime (again - not relativistic at all).

The Riemann tensor components Rtσµν = 0 since

Rtσµν = ∂µΓtσν − ∂νΓtσµ + ΓtµλΓλσν − ΓtνλΓλσµ (21)

and any Γtµν = 0. The Riemann tensor components Riσµν are

Riσµν = ∂µΓiσν − ∂νΓiσµ + ΓiµλΓλσν − ΓiνλΓλσµ

=∂µΓiσν − ∂νΓiσµ (22)

since if the index λ = t Γtσν = 0 and if λ = j then Γiµj = 0. Also, we must
have σ = t, and one temporal and one spatial remaining indices. The only
non-vanishing components are�



�
	Ritjt = −Rittj = ∂jΓ

i
tt = ∂j∂

iφ (23)
Newtonian Rie-

mann curvature

tensor
We found that the Newtonian curvature tensor (23) is indeed the tidal tensor

as in the Newtonian deviation equation (3). We found that while space is flat,
the Newtonian spacetime is curved if there is non-homogeneous gravitational
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force ∂iφ. Notice also that the Ricci tensor

Rµν ≡ Rρµρν (24)

has one non vanishing component�



�
	Rtt = Ritit = ∂i∂

iφ = ∇2φ (25)
Newtonian Ricci

tensor

and by Poisson equation it equals the mass density source

Rtt = 4πρ (26)

3 Surfaces Of Constant Curvature

Consider the 2-dimensional metric of the form

ds2 = a2
(
dχ2 + f (χ)

2
dψ2

)
(27)

There are three classical cases:
Hyperboloid: For f (χ) = sinh (χ), denote ψ ≡ φ, it is the hyperboloid (hy-
perbolic plane) of radius a with metric

ds2 = a2
(
dχ2 + sinh2 χdφ2

)
(28)

Plane: For f (χ) = χ, denote aχ ≡ r, ψ ≡ θ, it is the Euclidean plane with
metric

ds2 = dr2 + r2dθ2 (29)

Sphere: For f(χ) = sinχ, denote χ ≡ θ, ψ ≡ φ, it is the sphere of radius a with
metric

ds2 = a2
(
dθ2 + sin2 θdφ2

)
(30)

Exercise: Calculate the Riemann tensor, Ricci tensor and Ricci scalar of the
metric (27), and in particular of the three classical cases above (28),(29),(30).
What do they have in common?

We calculated the Christoffel symbols of metric (27) in previous tutorial.
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The non vanishing ones are
Γχψψ = −ff ′ (31)

Γψψχ =
f ′

f
(32)

3.1 Riemann Tensor

Use formula (16). The last two indices of the Riemann tensor are antisymmetric,
therefore they must have different indices, so there are four possible components
to consider: Rχψχψ, R

χ
χχψ, R

ψ
χχψ,R

ψ
ψχψ.

Rχψχψ = ∂χΓχψψ − ∂ψΓχψχ + ΓχχkΓkψψ − ΓχψkΓkψχ

=∂χΓχψψ − ΓχψψΓψψχ

= (−ff ′)′ − (−ff ′)
(
f ′

f

)
= − (f ′)

2 − ff ′′ + (f ′)
2

=− ff ′′ (33)

since derivatives with respect to ψ vanish, and the Γ does not vanish here only
when the index k = ψ.

Rχχχψ = ∂χΓχχψ − ∂ψΓχχχ + ΓχχλΓλχψ − ΓχψλΓλχχ = 0 (34)

since all the terms have Γ with two χ indices. Likewise,

Rψψχψ = 0 (35)

Rψχχψ = ∂χΓψχψ − ∂ψΓψχχ + ΓψχkΓkχψ − ΓψψkΓkχχ

=∂χΓψχψ + ΓψχψΓψχψ

=

(
f ′

f

)′

+

(
f ′

f

)2

=
f ′′f − (f ′)

2

f2
+

(f ′)
2

f2

=
f ′′

f
(36)

Collecting results (33) and (36), the non-vanishing independent Riemann
tensor components are
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�

�

�
Rχψχψ = −ff ′′ (37)

Rψχψχ = −f
′′

f
(38)

Sanity check: Notice that for the Euclidean plane f ′′ = 0, so indeed all
components of the Riemann tensor vanish and the space is flat. For the sphere

Rθφθφ = sin2 θ (39)

Rφθφθ = 1 (40)

3.2 Ricci Tensor

The only non-vanishing Ricci tensor components are�

�

�

�
Rχχ = Rkχkχ = Rψχψχ = −f

′′

f
(41)

Rψψ = Rkψkψ = Rχψχψ = −ff ′′ (42)

Again, for the plane all is zero, and for the sphere

Rθθ = 1 (43)

Rφφ = sin2 θ (44)

3.3 Ricci Scalar

The Ricci scalar is

R = gijRij = gχχRχχ + gψψRψψ =
1

a2

(
−f

′′

f

)
+

1

a2
1

f2
(−ff ′′) (45)

�
�

�

R = − 2

a2
f ′′

f
(46)

Only when f (χ) is trigonometric, hyperbolic or linear function, does f ′′

f is
constant, and so is R.

Hyperboloid: f ′′ = +f . It has a constant negative curvature scalar�



�
	Rhyperboloid = − 2

a2
(47)
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Plane: f ′′ = 0. It has constant zero curvature scalar�



�
	Rplane = 0 (48)

Sphere: f ′′ = −f . It has a constant positive curvature scalar�



�
	Rsphere =

2

a2
(49)

a is the curvature radius. Notice that it does not appear in the Riemann and
Ricci tensors, which are build from Γ - all spheres/hyperboloids have the same
shape. The Ricci scalar is build by contraction with the metric, and accounts
that the bigger the sphere/hyperboloid, the smaller (in absolute value) curvature
scalar.

These are the three two-dimensional geometries with constant curvature
scalar (this is a local statement). They are maximally symmetric, they con-
sist of three linearly independent Killing vector fields.
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