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1 The Geodesic Deviation Equation

1.1 Deviation Equation in Newtonian Gravity

Consider two nearby particles moving only under the influence of gravity. In an
inertial frame the equation of motion for the position () of the first particle
is
00 (o (1)
t oxJ
Let S* be a small separation vector between the two particles, S* < 1. The
position of the second particle is z* (t) +S* (t). We write its equation of motion,
and approximate to linear order in S°
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Subtracting (1) from (2) yields
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Equation (3) is the Newtonian deviation equation. The Hessian of the scalar

potential field % is called the tidal tensor. It determines the tidal forces on

an extended body in a gravitational field.

1.2 The Geodesic Deviation Equation

Consider two neighboring geodesics, separated at each point by an infinitesi-

mal separation vector S (deviation between nearby geodesics), |S*| < 1. One

geodesic has coordinate z* (1) and the second has coordinate z* (1) + S* (7).
Exercise: Find the equation for the acceleration of the separation vector.

This equation is called the geodesic deviation equation.
We denote the velocity along the first geodesic as u* = %.

The velocity of the separation, as we move along the geodesic in the direction

of the tangent u, is

V= (V,9)" = u’V, 5" = u”d,5" +u’Th 5°
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It is the “relative velocity of the geodesics”.
The acceleration of the separation , as we move along the geodesic in the

direction of the tangent u, is

At = (V, V) =u’V,VF =09, VF + u’TﬁpV”
_ave
T dr

+ T, u”Ve (5)

It is the “relative acceleration of the geodesics”.
Plug (4) into (5)
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Now we will write the geodesic equations for the two nearby geodesics, ap-

proximate to first order in S, and subtract them. The resulting equation (for

d;f:) will be substituted into (6), as well as the equation of the first geodesic

(for %).

The equation of the first geodesic z* (1) is

d2xP o dxt ﬁ

dr? modr dr
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The equation of the nearby geodesic z# (1) + S* (1) is

d? (xP + SP) d(zt + S*)d(x¥ + S”)
N4 o o _
dr? + (27 +57) dr dr 0 (8)
To linear approximation in S* (8) becomes
d*zP d%SP dx* dx¥ dzt dSY
T2, +570,T%,) S ore S0
dr? * dr? + (T +870:17,) dr dr odr dr 0 )

where the Christoffels in (9) are evaluated on the first geodesic, to first order in

separation S7
(27 +8%) =17, (27) + 570,17, (27) (10)



(9) can be written as

d*xP dzt dzv  d>SP ds”
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dr? T dr dr * dr? + ol dr Y (11)
Subtract (7) from (11) yields
d%se as” oo
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Also, (7) can be written as
du” v
e —IYu’u? (13)

Plug (12) and (13) into A* (6) yields
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At last, we found the geodesic deviation equation

[ AP = RP,, u”utS" (15))

where 7, is the Riemann curvature tensor (its components in coordinate

basis)

[ R’ = 0,5, — 8,15, +T0,T, —T0,T), (16)]

The relative acceleration between two neighboring geodesics is proportional
to the curvature. Physically, this acceleration is interpreted as a manifestation

of gravitational tidal forces.

2 Newtonian Spacetime Is Curved

Calculate the Riemann curvature tensor of a Newtonian spacetime consisting of
a gravitational potential ¢ (z?).
Consider a Newtonian spacetime (non relativistic). There are flat spatial

metric and temporal metric, but no spacetime metric. Instead, there is an
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absolute time function, giving the absolute time ¢ at any point in spacetime.
We can use the absolute time as a parameter and write a trivial equation of
motion for ¢, and the equation of motion for a particle in a Newtonian static

gravitational field ¢ (a:’) In inertial Cartesian coordinates,

d?t
at _ 1
a2z =0 (17)
R dt dt
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Repackage (17) and (18) in spacetime tensorial form as

A2z dxt dx”
+ P
dt? Yo dt  dt

=0 (19)

where the only non-vanishing I'’s are

[ I, =09' (20)]

So, a particle only under the influence of gravity is moving along geodesics

of spacetime. This is a manifestation of the equivalence principle, gravity is a
geometry of spacetime (again - not relativistic at all).
The Riemann tensor components R*, ,, = 0 since

RtUuV = 6/J«Ffﬂ/ - 6Vrfru + FZAFgU - Ff/)\rgu (21)

t : i
and any I'),, = 0. The Riemann tensor components R’ are

% _ % i i A % A
R ouv — aI»L:[‘cn/ - 8VFU,U, + F,u)\rau - FV)\FU,U,

=0T, — 0,7}, (22)

since if the index A = ¢ I',, = 0 and if X = j then I'}; = 0. Also, we must
have 0 = ¢, and one temporal and one spatial remaining indices. The only

non-vanishing components are

[ Ritjt = _Rittj = ajrit = [“)j@igb (23)]

We found that the Newtonian curvature tensor (23) is indeed the tidal tensor

as in the Newtonian deviation equation (3). We found that while space is flat,

the Newtonian spacetime is curved if there is non-homogeneous gravitational
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force 9*¢. Notice also that the Ricci tensor

R, =R’ (24)

upv

has one non vanishing component

[ Ry = Rim = 82‘3% = V2¢ (259

and by Poisson equation it equals the mass density source

Ry = 4mp (26)

3 Surfaces Of Constant Curvature

Consider the 2-dimensional metric of the form
ds? = a2 (d;f + £ (x)? dqp?) (27)

There are three classical cases:
Hyperboloid: For f (x) = sinh (x), denote ¢ = ¢, it is the hyperboloid (hy-

perbolic plane) of radius a with metric

ds® = a? (dx2 + sinh? de)2) (28)

Plane: For f(x) = x, denote ax = r, ¢b = 6, it is the Euclidean plane with
metric

ds* = dr? + r*dp* (29)

Sphere: For f(y) = sin x, denote x = 6, ¥ = ¢, it is the sphere of radius a with
metric
ds® = a” (df” + sin® 0d¢?) (30)

Exercise: Calculate the Riemann tensor, Ricci tensor and Ricci scalar of the
metric (27), and in particular of the three classical cases above (28),(29),(30).
What do they have in common?

We calculated the Christoffel symbols of metric (27) in previous tutorial.
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The non vanishing ones are

Y, =—ff (31)
rgxzzé; (32)

3.1 Riemann Tensor

Use formula (16). The last two indices of the Riemann tensor are antisymmetric,
therefore they must have different indices, so there are four possible components
to consider: RY, ,, R RY RV

XXy’ XXYIT hxpe
Ry = OxIy — Oy, + 0Ty — DT
_ P
=Ly = Thulux
_ Y ’ f/ _ "2 " "2
=(=ff) —(=ff) 7 == =fr"+()
=—ff (33)

since derivatives with respect to ¢ vanish, and the I" does not vanish here only
when the index k = .

— A A
Rxxxw - 8XF§¢ =0T + F;\I‘xw - F%\Fxx =0 (34)
since all the terms have I' with two x indices. Likewise,

P _
Ry =0 (35)
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Collecting results (33) and (36), the non-vanishing independent Riemann

tensor components are



R, ., =—ff" (37)

RY _f

x¥x [ (38)

Sanity check: Notice that for the Euclidean plane f” = 0, so indeed all

components of the Riemann tensor vanish and the space is flat. For the sphere

R, =sin®0 (39)
R, o0 =1 (40)

3.2 Ricci Tensor

The only non-vanishing Ricci tensor components are

s

_ pk — pY —
Ryx = Rpy =R Xwx o f (41)
Ryy = Ry = R = =1 1" (42)
Again, for the plane all is zero, and for the sphere
Rgg =1 (43)
Ry = sin® 0 (44)
3.3 Ricci Scalar
The Ricci scalar is
g 1 id 11
_ D i —
R =g"Rij = ¢ Ry + 9" Ryy = 22 <_f> "‘ﬁﬁ(‘ff@ (45)
2 f//
R=—-——— 46
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Only when f (x) is trigonometric, hyperbolic or linear function, does s
constant, and so is R.

Hyperboloid: f” = +f. It has a constant negative curvature scalar

2
[ Rhyperboloid = _a72 (479




Plane: f” = 0. It has constant zero curvature scalar

[ Rpiane =0 (48)]

Sphere: f” = —f. It has a constant positive curvature scalar

2
[ Rsphere = a*2 (49)}

a is the curvature radius. Notice that it does not appear in the Riemann and

Ricci tensors, which are build from T - all spheres/hyperboloids have the same
shape. The Ricci scalar is build by contraction with the metric, and accounts
that the bigger the sphere/hyperboloid, the smaller (in absolute value) curvature
scalar.

These are the three two-dimensional geometries with constant curvature
scalar (this is a local statement). They are maximally symmetric, they con-

sist of three linearly independent Killing vector fields.
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