Homework 3 - Fourier Transform and Wave Function

Question 1:

Derive the Fourier series for the function f (z) = 22 in the domain [—7, 7]. Use this to prove that

Solution:

Expanding f (z) into Fourier series we have
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or simply

Now let us take its value at x = 7,

Question 2:

22
Find the Fourier transform of the Gaussian g (x) = e 2.2, and show that AxzAk = 1.
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Solution:

Taking the Fourier transform of g (z) yields
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Looking at the power of the exponent we can write
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where we defined v = x + io?k. we are left with a simple Gaussian integral I which can be solved as follows
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moving to polar coordinates
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where we defined ¢ = r2 hence d¢ = 2rdr, which gives I = v/27m02.
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Calculating the square root of the variance Az = 1/ (22) — (z)* of both results we see that
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where the integral vanishes as it is symmetric and the integrand is anti-symmetric.
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defining a = 2%2 we can write
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A similar calculation for Ak yields
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Question 3:

Prove the following identity
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where f (z) is some analytic function and F [| denotes a Fourier transform of whatever is in the brackets.
Solution:

Looking at f (x) in terms of the k-space basis,
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we see that
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Now, taking the Fourier transform reads
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hence




