(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 138788, 2841] NotebookOptionsPosition[ 135406, 2784] NotebookOutlinePosition[ 135930, 2803] CellTagsIndexPosition[ 135887, 2800] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[TextData[{ "Numerical solution of TOV equations for a spherically symmetric star with \ power law equation of state ", Cell[BoxData[ FormBox[ RowBox[{"p", "=", SuperscriptBox["K\[Rho]", FractionBox[ RowBox[{"n", "+", "1"}], "n"]]}], TraditionalForm]],ExpressionUUID-> "7aa97027-95f7-4278-ad87-5fd27fe19dfa"], " with n=0.5,1.5:\nBegin with clearing the kernel for computational hygiene \ :)" }], "Text", CellChangeTimes->{{3.8278177190849414`*^9, 3.82781790954451*^9}, 3.8284387846385345`*^9, {3.830931514551894*^9, 3.8309315517427263`*^9}},ExpressionUUID->"e545fe2c-da2d-4a54-a956-\ a7c16ced5074"], Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", "\"\\"", "]"}], ";"}], "\n", RowBox[{ RowBox[{"$PrePrint", "=", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{"MatrixQ", "[", "#", "]"}], ",", RowBox[{"MatrixForm", "[", "#", "]"}], ",", "#"}], "]"}], "&"}]}], ";"}], "\n", RowBox[{ RowBox[{ "Needs", "[", "\"\\"", "]"}], ";"}], "\n", RowBox[{ RowBox[{ "Needs", "[", "\"\\"", "]"}], ";"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.828438788968375*^9, 3.828438788968375*^9}, { 3.8291228061634617`*^9, 3.82912280727139*^9}}, CellLabel->"In[78]:=",ExpressionUUID->"781572ff-86e6-4646-9d02-1835bd272312"], Cell[TextData[{ "We need to define all constants in the problem: G,c,\[Rho][0],p[0] and K[n] \ (extracted from the initial conditions for ", Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox["p", "0"], ",", SubscriptBox["\[Rho]", "0"]}], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "22c600a6-037d-4526-b9c9-c36289a0487f"], "):" }], "Text", CellChangeTimes->{{3.8278210271308875`*^9, 3.8278210428191075`*^9}, 3.827821082882926*^9, {3.827821340822676*^9, 3.8278213629059935`*^9}, { 3.827821425375161*^9, 3.8278214268652973`*^9}, {3.830930962371065*^9, 3.8309309770400877`*^9}, {3.8309314125068707`*^9, 3.8309314252262135`*^9}, {3.830931560789918*^9, 3.8309316261303654`*^9}},ExpressionUUID->"89461dbf-9dea-4b93-b2ed-\ 0cdc91f1c8e7"], Cell[BoxData[{ RowBox[{ RowBox[{"G", "=", RowBox[{"6.674", "\[Times]", SuperscriptBox["10", RowBox[{"-", "11"}]]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"c", "=", RowBox[{"3", " ", SuperscriptBox["10", "8"]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Rho]0", "=", RowBox[{"5", " ", SuperscriptBox["10", "17"]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p0", "=", RowBox[{"\[Rho]0", " ", SuperscriptBox["c", "2"]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"K", "[", "n_", "]"}], " ", "=", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"5", " ", SuperscriptBox["10", "17"]}], ")"}], RowBox[{"-", FractionBox["1", "n"]}]], " ", SuperscriptBox["c", "2"]}]}], ";"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.8278179113482614`*^9, 3.827817917054579*^9}, { 3.8278179541367702`*^9, 3.8278180943136177`*^9}, {3.8278186187119665`*^9, 3.8278186452686825`*^9}, {3.8278187000500984`*^9, 3.827818711676612*^9}, { 3.8278188141144657`*^9, 3.827818858264365*^9}, {3.8278190153739853`*^9, 3.82781908479444*^9}, {3.8278191196887083`*^9, 3.827819139704537*^9}, { 3.827819186906582*^9, 3.8278191894882164`*^9}, {3.827819241969576*^9, 3.827819470105199*^9}, {3.827819501548587*^9, 3.8278195054145594`*^9}, 3.827819831898136*^9, {3.8278199251469183`*^9, 3.827819989908251*^9}, { 3.8278202845886908`*^9, 3.827820306163963*^9}, {3.8278203493928485`*^9, 3.8278203598571577`*^9}, {3.827820432513584*^9, 3.827820569304202*^9}, { 3.8278206412667856`*^9, 3.827820643960103*^9}, {3.827820939302781*^9, 3.8278209412019796`*^9}, 3.8278210509653325`*^9, {3.8278213382176933`*^9, 3.8278213385957437`*^9}, {3.827821378381488*^9, 3.8278213870250883`*^9}, { 3.827821418295125*^9, 3.827821421158351*^9}, {3.8284367931683836`*^9, 3.8284367956843987`*^9}, {3.828438748272299*^9, 3.8284387515527287`*^9}, { 3.828438801178727*^9, 3.8284388068592324`*^9}, {3.8284430339509797`*^9, 3.828443060213775*^9}, {3.8291202506955442`*^9, 3.8291202915842595`*^9}, 3.829721444542759*^9, {3.8297218083562307`*^9, 3.8297218103800964`*^9}, { 3.830424312104026*^9, 3.8304243158546314`*^9}, {3.830928409313978*^9, 3.83092841021308*^9}, {3.830930979564242*^9, 3.830930979761919*^9}, { 3.8309314285981045`*^9, 3.8309314351822977`*^9}}, CellLabel->"In[82]:=",ExpressionUUID->"0a49946b-36c3-4c0b-bc6a-e2dcb6e80d86"], Cell["\<\ We run over the two values of n, and define the minimal and maximal radii of \ the numerical solution as \[Epsilon],R respectively: \ \>", "Text", CellChangeTimes->{{3.827821061446088*^9, 3.827821148754035*^9}, { 3.8284427797123976`*^9, 3.8284427862083273`*^9}, {3.830930796946849*^9, 3.830930899954094*^9}},ExpressionUUID->"18c06fbb-189e-4b77-b5ea-\ bbd6346a94da"], Cell[BoxData[{ RowBox[{ RowBox[{"n1", "=", "0.5"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n2", "=", "1.5"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"R", " ", "=", " ", SuperscriptBox["10", "10"]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", " ", "=", " ", SuperscriptBox["10", RowBox[{"-", "10"}]]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.827821228761426*^9, 3.8278213594705353`*^9}, { 3.8278213959793253`*^9, 3.8278214163967752`*^9}, {3.827821478550288*^9, 3.8278215230976872`*^9}, 3.8284344108841906`*^9, 3.8284344440872135`*^9, { 3.8284345300401044`*^9, 3.8284346244094305`*^9}, {3.8284346717673683`*^9, 3.8284347002095118`*^9}, {3.828434730982239*^9, 3.828434848173891*^9}, { 3.8284350460132127`*^9, 3.8284350631093607`*^9}, {3.8284351248804655`*^9, 3.8284351636104918`*^9}, {3.828435371995325*^9, 3.8284353947787857`*^9}, 3.828436810037058*^9, {3.828437090440008*^9, 3.828437124552207*^9}, { 3.828437468717781*^9, 3.8284374920323987`*^9}, {3.8284376695920415`*^9, 3.828437680245504*^9}, {3.8284377475278273`*^9, 3.8284377554805126`*^9}, { 3.828437829529174*^9, 3.828437838398078*^9}, {3.828437906379388*^9, 3.8284379445994616`*^9}, {3.8284379773427515`*^9, 3.8284380141204844`*^9}, {3.8284380703234425`*^9, 3.8284380795864606`*^9}, {3.8284383057545996`*^9, 3.828438352279709*^9}, { 3.828438390808674*^9, 3.8284384218860765`*^9}, {3.8284385934367113`*^9, 3.8284386891136465`*^9}, {3.8284388163971834`*^9, 3.8284388184909134`*^9}, 3.8284389724480066`*^9, {3.828439250116989*^9, 3.8284393227617035`*^9}, { 3.8284396982669206`*^9, 3.8284397376057854`*^9}, {3.828439776864148*^9, 3.828439815188324*^9}, {3.8284400017448664`*^9, 3.828440015055461*^9}, { 3.8284400639922476`*^9, 3.828440064850152*^9}, 3.828440371258003*^9, 3.828441494628089*^9, {3.8284420520227923`*^9, 3.828442111617484*^9}, { 3.828442206512932*^9, 3.828442221341322*^9}, {3.8284422590143275`*^9, 3.8284422597409244`*^9}, {3.8284423266795187`*^9, 3.8284423361996107`*^9}, 3.8284424597088747`*^9, {3.828442768304035*^9, 3.8284427693597174`*^9}, { 3.828442965492171*^9, 3.828442994714838*^9}, {3.8284431446196976`*^9, 3.8284431530945663`*^9}, {3.8284432177710047`*^9, 3.8284432204962873`*^9}, {3.828443376672138*^9, 3.8284433982654586`*^9}, { 3.8291200277640705`*^9, 3.8291200284903193`*^9}, {3.829120238001938*^9, 3.8291202387325764`*^9}, {3.829120295730575*^9, 3.8291202977469034`*^9}, { 3.8291221674896564`*^9, 3.829122190223383*^9}, {3.829122360834406*^9, 3.8291223645151873`*^9}, {3.829122537047161*^9, 3.8291225386658316`*^9}, { 3.8291225764384885`*^9, 3.8291225956491566`*^9}, {3.8292091247550025`*^9, 3.8292091475764823`*^9}, 3.829719888229741*^9, {3.8297199294286575`*^9, 3.8297199531418047`*^9}, {3.8297205425675583`*^9, 3.8297205548753834`*^9}, {3.8297208055788665`*^9, 3.8297208145169067`*^9}, {3.829814011826823*^9, 3.829814012327718*^9}, { 3.829814049303687*^9, 3.829814082392847*^9}, {3.8304170991636424`*^9, 3.830417102233619*^9}, {3.830417439129162*^9, 3.8304174443336983`*^9}, 3.830417474429878*^9, {3.830417534455181*^9, 3.830417534724063*^9}, { 3.8304244973041153`*^9, 3.8304245250045605`*^9}, {3.830424602817969*^9, 3.8304246300586815`*^9}, {3.8304248372011347`*^9, 3.830424841483531*^9}, { 3.830425004808639*^9, 3.830425060944209*^9}, {3.830425144855592*^9, 3.8304251553644285`*^9}, {3.830425246876935*^9, 3.8304252473440948`*^9}, { 3.8304253378042736`*^9, 3.83042533841026*^9}, {3.8304270954790735`*^9, 3.8304270965266294`*^9}, {3.8304272249757376`*^9, 3.830427228751522*^9}, 3.830427315131485*^9, {3.8304273555306635`*^9, 3.8304273613632913`*^9}, 3.830427411177389*^9, {3.8304275407158594`*^9, 3.830427544212959*^9}, { 3.830928548014028*^9, 3.8309285482496777`*^9}, {3.8309303920477467`*^9, 3.830930449207364*^9}, {3.8309309087127714`*^9, 3.830930910053419*^9}, { 3.830932155175905*^9, 3.830932193854575*^9}, {3.830932253930182*^9, 3.830932254217454*^9}, {3.8309327400705256`*^9, 3.8309327401657763`*^9}}, CellLabel->"In[87]:=",ExpressionUUID->"f82a552c-8833-49e8-a84d-0d8082b7acec"], Cell["\<\ In order to solve numerically for \[Rho],p one recalls their relations to \ \[Mu][r] (Note - these functions are defined but not called on for the rest \ of the code - they are presented to ensure that the reader understands the \ origin of their plots later):\ \>", "Text", CellChangeTimes->{ 3.830930848894785*^9, {3.8309309207978354`*^9, 3.830930942810277*^9}, { 3.8309309950648785`*^9, 3.830931026148326*^9}, {3.830931648025581*^9, 3.830931817838831*^9}, {3.8310978129594707`*^9, 3.831097822840848*^9}},ExpressionUUID->"0544e48b-0655-41fe-8715-\ ea8327cbbb72"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"\[Rho]", "[", "r_", "]"}], ":=", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"p", "[", RowBox[{"r_", ",", "n_"}], "]"}], ":=", RowBox[{ RowBox[{"K", "[", "n", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Rho]", "[", "r", "]"}], ")"}], FractionBox[ RowBox[{"n", "+", "1"}], "n"]]}]}], ";"}]}], "Input", CellChangeTimes->{{3.830931001323865*^9, 3.830931001928889*^9}}, CellLabel-> "In[127]:=",ExpressionUUID->"1aee8345-d088-4d2f-93a8-5d38edfa212b"], Cell["\<\ The 3 TOV equations can be gathered into a single, 2nd order equation in \ \[Mu][r]. We numerically solve for the mass by applying the function \ NDSolveValue on the TOV equation for \[Mu], combined with a couple of initial \ conditions at r=\[Epsilon], assuming the density doesn\[CloseCurlyQuote]t \ vary much from 0 to \[Epsilon]. For n=0.5:\ \>", "Text", CellChangeTimes->{{3.830931042915007*^9, 3.8309311134245577`*^9}, { 3.830931831531845*^9, 3.8309319619374886`*^9}, {3.8309319937703276`*^9, 3.8309320027759676`*^9}},ExpressionUUID->"052d67d0-af19-42b1-89dc-\ 5cb9b7c91fb8"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{"Soln1", "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", SuperscriptBox["r", "2"]], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox[ RowBox[{"2", " ", "G", " ", RowBox[{"\[Mu]", "[", "r", "]"}]}], RowBox[{ SuperscriptBox["c", "2"], " ", "r"}]]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"r", " ", RowBox[{"(", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"K", "[", "n1", "]"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n1", "+", "1"}], "n1"]]}], ",", "r"}], "]"}], "/", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{ RowBox[{ FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], " ", SuperscriptBox["c", "2"]}], "+", RowBox[{ RowBox[{"K", "[", "n1", "]"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n1", "+", "1"}], "n1"]]}]}], ")"}]}], ")"}]}], ")"}]}], "+", "1"}], ")"}]}], "-", FractionBox["1", SuperscriptBox["r", "2"]]}], "==", RowBox[{ FractionBox[ RowBox[{"8", " ", "\[Pi]", " ", "G", " "}], SuperscriptBox["c", "4"]], " ", RowBox[{"K", "[", "n1", "]"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n1", "+", "1"}], "n1"]]}]}], "}"}], "&&", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "[", "\[Epsilon]", "]"}], "\[Equal]", RowBox[{ FractionBox["4", "3"], " ", "\[Pi]", " ", "\[Rho]0", " ", SuperscriptBox["\[Epsilon]", "3"]}]}], "}"}], "&&", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Mu]", "'"}], "[", "\[Epsilon]", "]"}], "\[Equal]", RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["\[Epsilon]", "2"], " ", "\[Rho]0"}]}], "}"}]}], "}"}], ",", "\[Mu]", ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "R"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "MachinePrecision"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}]}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.8284390117733703`*^9, 3.8284390158929873`*^9}, 3.8284392924417486`*^9, {3.8284393334967155`*^9, 3.8284393361574965`*^9}, { 3.828439535943283*^9, 3.8284395710662518`*^9}, {3.828439639486446*^9, 3.8284396951532164`*^9}, {3.8284398604532623`*^9, 3.8284398635320473`*^9}, 3.828439910344283*^9, {3.8284399918294353`*^9, 3.828439996990039*^9}, { 3.828440270259571*^9, 3.8284402909093103`*^9}, {3.828440323843795*^9, 3.8284403360233297`*^9}, {3.8284413077757215`*^9, 3.8284414337187366`*^9}, {3.8284415446447487`*^9, 3.828441552806776*^9}, { 3.828442304639058*^9, 3.8284423092570744`*^9}, {3.8284423592029276`*^9, 3.8284424031314135`*^9}, {3.8284425216319523`*^9, 3.8284425251616616`*^9}, {3.8284425666277657`*^9, 3.828442612001305*^9}, { 3.828442644467971*^9, 3.828442644908971*^9}, {3.8284428047777214`*^9, 3.828442806484603*^9}, {3.828442842147324*^9, 3.828442861230487*^9}, 3.828443013006927*^9, 3.828443072973315*^9, {3.828443326547696*^9, 3.828443340071419*^9}, {3.8284433831046777`*^9, 3.8284433908111353`*^9}, { 3.8284435775498333`*^9, 3.8284436035568795`*^9}, {3.8291198163904448`*^9, 3.8291198923046155`*^9}, {3.8291199378022203`*^9, 3.829119943792698*^9}, { 3.829119983395211*^9, 3.829119989573835*^9}, {3.829121258545411*^9, 3.8291213793971653`*^9}, {3.8291214728476963`*^9, 3.829121625440997*^9}, { 3.829121797037846*^9, 3.829121798592328*^9}, {3.829121881300353*^9, 3.829121894750989*^9}, {3.8291219596317325`*^9, 3.8291219771199694`*^9}, { 3.8291220074608865`*^9, 3.8291220449459524`*^9}, {3.8291221004935412`*^9, 3.8291221226664143`*^9}, {3.829122607719823*^9, 3.8291226304896326`*^9}, { 3.829122874882585*^9, 3.829122898863265*^9}, {3.829123007245637*^9, 3.829123016019497*^9}, {3.8291231114114428`*^9, 3.829123153641573*^9}, { 3.829123209411395*^9, 3.829123239414193*^9}, {3.8291233223606405`*^9, 3.829123324872695*^9}, {3.829123457186825*^9, 3.829123471085246*^9}, 3.829209109113761*^9, {3.8292091516188636`*^9, 3.829209156273938*^9}, { 3.829719771127221*^9, 3.8297198281654987`*^9}, {3.829719897202426*^9, 3.8297199138858595`*^9}, {3.829719985296131*^9, 3.829720016837015*^9}, { 3.8297203579335527`*^9, 3.8297203650196323`*^9}, {3.829720399902399*^9, 3.8297204397244396`*^9}, {3.829720729387519*^9, 3.829720729700323*^9}, { 3.829720798727751*^9, 3.8297208001662045`*^9}, {3.829720871697575*^9, 3.829720915075013*^9}, {3.8297209467024484`*^9, 3.8297209509651985`*^9}, { 3.8297211218102703`*^9, 3.829721131415781*^9}, {3.8304233958191795`*^9, 3.8304234043368893`*^9}, {3.8304245645121865`*^9, 3.830424599345656*^9}, { 3.8304247727050734`*^9, 3.8304247789374404`*^9}, {3.830424856863079*^9, 3.8304248621930437`*^9}, 3.8304251287780695`*^9, {3.830427335079514*^9, 3.830427338711361*^9}, {3.8309285804979906`*^9, 3.830928797992405*^9}, { 3.830928912402594*^9, 3.8309289295328455`*^9}, {3.8309290359280024`*^9, 3.8309290477532816`*^9}, {3.8309291560345564`*^9, 3.8309291733906207`*^9}, {3.8309292119304876`*^9, 3.8309292126407566`*^9}, 3.8309293891247516`*^9, {3.830929457415073*^9, 3.83092949748098*^9}, 3.8309295564925632`*^9, {3.8309301507876935`*^9, 3.8309301514146323`*^9}, { 3.830931455090051*^9, 3.830931457776555*^9}, {3.830932298767923*^9, 3.830932312193673*^9}}, CellLabel->"In[91]:=",ExpressionUUID->"22d57c64-0195-4e6e-9f9d-1c20125c5e0c"], Cell[BoxData[ TemplateBox[{ "NDSolveValue", "ndsz", "\"At \\!\\(\\*RowBox[{\\\"r\\\"}]\\) == \ \\!\\(\\*RowBox[{\\\"21790.324854442242`\\\"}]\\), step size is effectively \ zero; singularity or stiff system suspected.\"", 2, 91, 13, 20422980492700890382, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{{3.8304273409475336`*^9, 3.8304273644543295`*^9}, 3.8304274228132944`*^9, 3.8304275476249657`*^9, 3.8309290799535856`*^9, { 3.8309291597062283`*^9, 3.830929174096574*^9}, 3.8309292132416916`*^9, 3.830929391791775*^9, 3.830929474145347*^9, 3.830929519346689*^9, 3.830929557087167*^9, 3.830929736672343*^9, 3.830930152117041*^9, 3.8309303958002186`*^9, {3.830930426223441*^9, 3.830930451746625*^9}, 3.83093147919995*^9, {3.830932164190273*^9, 3.830932196962861*^9}, 3.8309322587077427`*^9, 3.830932313035307*^9, 3.830932744621374*^9, 3.8309471567128425`*^9}, CellLabel-> "During evaluation of \ In[91]:=",ExpressionUUID->"00799572-913d-402b-87ab-2a60d346eed4"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["InterpolatingFunction", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1]], LineBox[CompressedData[" 1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAAGRaJIko0OD8aqLM/0yeZQfR4o5yI M3ZAAZMfr/doU0VwRXOCkCKHQCaKqG6x84VFdWk4+ZkvkUBkzPfJlfuhRfaL E+G0sZZAmRc/djyutEU/vaccVKucQHNwoj510MRFZfgUe28foUC6RXaKvrTR RY6ZshH3JKRAyqLLHNnD3EWZaD5AYxynQCJ4CllXqeVFxTjBPcXgqUA+5iV6 x1PuRVWQIGXp4KxAVGrbaNIA9UUG6XZbA66vQON/tcusoftFzbfd9IA2sUA5 mphs4akBRsk+7lDhs7JAUFu/QFCPBkZVRnqUvBe0QH7ZgGvG2QtGlJH07HiZ tUDwioHa8zURRsPzZZEnFLdAJy6i/7rhFEaD1lIdUXW4QMaO0+3muBhG9fwt vlv0uUA4LXxGlFwdRvejhEbhWbtANgo925ITIUasjsnjR928QAKkKoaC7iNG UZAFzaBZvkCiARYwLgEnRocSvZ10vL9AII3JpS0eKkY4bLHBlJ7AQOwDFnRs xC1GdA9CqCxSwUBAT2Myw7cwRig+zrQ9AsJA5hX/xcCjMka1jtFLP8HCQJdq xtwu3TRGip+SVn5zw0BvITjOLhI3RjjSyuutNMRAtnhnvSWbOUZfkP6mVvLE QJYlPI8ePTxGzg7w1TyjxUDbeHTLWNI+RhavWI8TY8ZAKk+kmzzhQEamD3+8 JxbHQHVCl5hvUEJGr/ugD7XFx0A0VCFXLcdDRpEJOu0yhMhAsVZBgN1tRUa7 15A+7jXJQIt0EO/CBkdGvsdeGpr2yUBU3MrGJNFIRgl46mmDqspAaYjMn56K SkbNs3Hf5VrLQE6e6itFR0xGahFw3zgazEA6Dxg52DVORk8vLFPJzMxAGx1/ DfYGUEYNb19RSo7NQFYrdTnSC1FGRDqOdURMzkBqODT7VRBSRsPFeg18/c5A GK6XK5MGU0Ybc94vpL3PQGyjaxQ5FFRGXvD/4oQ40EBx9t7rkxFVRutsDkF0 kNBAh1iUZ5AKVkZkeljk2+/QQK3y5URJGFdGAWiBQeJI0UBTBFYudRJYRovm 5eNgqdFAK1II8pEeWUbRKkgZHAjSQCwxwL4dIVpGO0+JCHZg0kCFLmvugQxb RpIEBj1IwNJASHn8qZgDXEYNmmEruRnTQLLa8gd84FxGdMD4XqJ600A+mxst gMJdRpisjSXI2dNAYAO01qOPXkbgeAGmjDLUQKUMYPtUPF9GFNawa8mS1EBy lHp5mN1fRmwTP+uk7NRAYpfzyMgpYEbsNl3ElEfVQMIUzccDS2BGGBzBaQ== "]]}, Annotation[#, "Charting`Private`Tag$13934#1"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.1], Scaled[0.1]}, { Scaled[0.1], Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{1.*^-10, 21790.324854442242`}, {0., 1.032693237021038*^31}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.1], Scaled[0.1]}, { Scaled[0.1], Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`*^-10", ",", "21790.324854442242`"}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{{{}, {}, TagBox[{ Directive[ Opacity[1.], RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1]], LineBox[CompressedData[" 1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAAGRaJIko0OD8aqLM/0yeZQfR4o5yI M3ZAAZMfr/doU0VwRXOCkCKHQCaKqG6x84VFdWk4+ZkvkUBkzPfJlfuhRfaL E+G0sZZAmRc/djyutEU/vaccVKucQHNwoj510MRFZfgUe28foUC6RXaKvrTR RY6ZshH3JKRAyqLLHNnD3EWZaD5AYxynQCJ4CllXqeVFxTjBPcXgqUA+5iV6 x1PuRVWQIGXp4KxAVGrbaNIA9UUG6XZbA66vQON/tcusoftFzbfd9IA2sUA5 mphs4akBRsk+7lDhs7JAUFu/QFCPBkZVRnqUvBe0QH7ZgGvG2QtGlJH07HiZ tUDwioHa8zURRsPzZZEnFLdAJy6i/7rhFEaD1lIdUXW4QMaO0+3muBhG9fwt vlv0uUA4LXxGlFwdRvejhEbhWbtANgo925ITIUasjsnjR928QAKkKoaC7iNG UZAFzaBZvkCiARYwLgEnRocSvZ10vL9AII3JpS0eKkY4bLHBlJ7AQOwDFnRs xC1GdA9CqCxSwUBAT2Myw7cwRig+zrQ9AsJA5hX/xcCjMka1jtFLP8HCQJdq xtwu3TRGip+SVn5zw0BvITjOLhI3RjjSyuutNMRAtnhnvSWbOUZfkP6mVvLE QJYlPI8ePTxGzg7w1TyjxUDbeHTLWNI+RhavWI8TY8ZAKk+kmzzhQEamD3+8 JxbHQHVCl5hvUEJGr/ugD7XFx0A0VCFXLcdDRpEJOu0yhMhAsVZBgN1tRUa7 15A+7jXJQIt0EO/CBkdGvsdeGpr2yUBU3MrGJNFIRgl46mmDqspAaYjMn56K SkbNs3Hf5VrLQE6e6itFR0xGahFw3zgazEA6Dxg52DVORk8vLFPJzMxAGx1/ DfYGUEYNb19RSo7NQFYrdTnSC1FGRDqOdURMzkBqODT7VRBSRsPFeg18/c5A GK6XK5MGU0Ybc94vpL3PQGyjaxQ5FFRGXvD/4oQ40EBx9t7rkxFVRutsDkF0 kNBAh1iUZ5AKVkZkeljk2+/QQK3y5URJGFdGAWiBQeJI0UBTBFYudRJYRovm 5eNgqdFAK1II8pEeWUbRKkgZHAjSQCwxwL4dIVpGO0+JCHZg0kCFLmvugQxb RpIEBj1IwNJASHn8qZgDXEYNmmEruRnTQLLa8gd84FxGdMD4XqJ600A+mxst gMJdRpisjSXI2dNAYAO01qOPXkbgeAGmjDLUQKUMYPtUPF9GFNawa8mS1EBy lHp5mN1fRmwTP+uk7NRAYpfzyMgpYEbsNl3ElEfVQMIUzccDS2BGGBzBaQ== "]]}, Annotation[#, "Charting`Private`Tag$13934#1"]& ]}}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{{}, {}}, {{}, {}}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.1], Scaled[0.1]}, { Scaled[0.1], Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Directive[ Opacity[0.5], Thickness[Tiny], RGBColor[0.368417, 0.506779, 0.709798]], FrameTicks -> {{None, None}, {None, None}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{1.*^-10, 21790.324854442242`}, {0., 1.032693237021038*^31}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.1], Scaled[0.1]}, { Scaled[0.1], Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`*^-10", ",", "21790.324854442242`"}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Order: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Method: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"Hermite\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Periodic: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["False", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], InterpolatingFunction[{{1.*^-10, 21790.324854442242`}}, { 5, 7, 2, {183}, {4}, 0, 0, 0, 0, Automatic, {}, {}, False}, CompressedData[" 1:eJwtxXk4lGkAAHA2lI2kLY1imxxdOmdCyrzvOxiyqKQpCqNpGUOLah2xKZN1 rSNJCNsQzw6SIxNbrWPFdJGp+WpKx8RqeaJcxUOx37F//J7fSn7oXv9v1NTU 1HH1uFt/PXv+5pduVlhhuUzV/pq1P7nW5cgzFUs3/kKcvmcvS9++dby/Y4DF lhsbGXDHWNvau7S5s9Osl8dKZWY6GmAby8hGEqkDYosa+9WNF4PUpnk9mzyN QOPg8ciTI6bA+3TgkN789eBnsYb/SSkTrJ27cvxc7Q7gwfU80BFuD95Af9N5 ni7g0QkrKLf0AJbmc0q7vx4Ey88wtHmf+UDZhvWXlAQBt57E2Yr642Bdzu3x RNdosNinKqX1pAhUp/KtUj4lg5t5tOki2/OgQ+rFjLmcB5S/+Y0EzBYB/hx6 /5/2ZSDZ7uhgZk0NUHWxjn6sawDChP0uCVYtACQFfLj7SQaWp5UvcKvoAnot Hk3izc/AUOKScbBSBUbWpgwbhr0DIr7g3lGrj+DUi2txF6WfwE2JVuUwYwbY 6pZnGKprQmzUu+6VtS7cfajRKGrvYshbnlM44mAEfX9kCkVlprDFYS19wMsC jvv0hmhrMeGoeoxUFLEdWktSst4I7KB58I2B2EvOcJ1Zx3Vlpzsc05VzxW2e 0MRXuez+9sNwYupzZsWEAI66qCJSKsLgoPCVqWBzJFRtXNg5Qj8DE/5dE5of mgBF1Z29tZYZMO9RYekiaTbM7tIdsmb8DhXe6xty1Urhnpgq13XWlbCpxNR5 2r0O0lScMXuH29DP6UihdlkrHHYsMGB7PYBKh6j0C5pPoMrElq4KfwGj5ibH hgh64DkfnYK3eQPQWrrTJbhzBH6pu2g2r20SLlL+gfy2qyNZxVMP2sRcpGHW t8CsYiG6amVzXblpKcqytm1Op9MRZ5JRox+6CsV/MRCObd2EfmE+vZJWZ4mW CXi+p7cAFHvwyRRNjYMSTs06R1u5odwdvfSz7vuQ9KFlX7G9N0psf/ugSHIE pXYzG9s9g9E2+qCFj+YJRBNy9XrDo1G6bxjzpUCEnIL6VhfkJyNRoKvEXJ6J nu9mlg8/zEWwdqtbCKcIzc88xfl1iQS91+3t61JUI9XxwJ644npUZ9DcsqKl GemfHftS9sNdVJ5c9X5ovhxxVUntPNpjNGvFL5KbPUHCLQPRWtoKlG1e3dAU pkAthpGfo5QKpP612GP3ewViqzqrzWcUSHF20rzZDENXjU3iIiwwFF/v8nI9 A0MbXA9m5bIwtMsgofIGfqiqRqbAV82UDE/h6yWW8HcBDOVeDuvWgBj65/vm 4GQ2ho7VXnWJtMPQDCfPwt8eQ+HGJowSDoZCAu5MazhiKLAqoM0fv0a2wlnT CUOVNmmjdPzyiql8W/zJ1+9mgvCvi4N0TuD/xP9gGINfrdhTkIQfz5keT8E/ cKPULQ0/+LtEViY+T35pkHhfxrX88/hYc6p7Fn66mHGP2OmMEl3A57Qt8iS2 +9YtlLjKdE0acQgjR0y8ga1VR8ws66gnttHPvkW85dCxZmJbdn4rsdPqtnbi /it8GXEKXe0uMa/6PvlE0q57xBmHH5M/1RgkN5Zo3ifuK1pFnkOzJXfOcCdv vMUlZ/Z7kUc68sgn7vDJI+wDyANGqA9cFpDrnQ4kr1woJHctpi5spP7wgtpr lnrB0iDyvzdS85jU09bU/SzqO2xqMYfaz5Ga7kRN20nd8P9eztT/Aaxmxf4= "], {Developer`PackedArrayForm, CompressedData[" 1:eJwl0QlryAEAxuH/5pjNsYM5h40dEU0WEU0TkUWGtqwtmiba2iKyaCKypomI LJqsLbJoos1ERDRNNJFFRBZNZFk0WeORt54v8P4SCkrXlIQEQXAj+L8BDCac YUQSQyxjmcAkEkgkhenMZBZpzGU+C1nEYpaynExWkcU6csgln41sYjNbKaaU 7eykjD3sZT8HqeAwRzjGCU5RzVnOUUs9F2ngCle5TjM3uc1d7vOQRzzmKc94 QQevect7OvnEZ77STQ8/+UUffwh18CCGMJQRRDOKMYxnIvFMJZlpzCCV2cxh HgtIJ4MlLGMFK1nNWrJZTx4bKKCQLRTxL/g2drCL3ZSzjwMcopIqjnKck5zm DDWcp44LXOIyjVyjiRZucYd7PKCVNp7QznNe8oo3vOMDH+niC9/4zg96+U0/ IaFBMJAwIhhOFCMZzTjimMwUkvgLQfJZJw== "], CompressedData[" 1:eJxFzGcgVf/DAHDbtbOyyoqLyC9ERtx7zvmeSxkJWRU3FOmSHRqEjGQLISuF IiKSJN3uMVoyQrIzQkayqf4aj+ft58VHyuGc2Sl6Ojo6WQY6ugBKdJI8JURX VE4o8blgGYFv7Fhu2ZM2SCG5WIj6KUp3nz+PhdTuR4RK3MhVg+UOaHtSWM+j +XjdyaANeAZfTXBCnjpyzHdCwnf1OlMf3NRNUnntwN33nGBVZGo+Z9sDBb3c E0668EBX4HUDPt/mDeFwiAYiljwE/codEXqS16x78nza3gPtAwS+oQ3NQctJ 6JRLym7b8591uzuRuq7SOcJH5HRKHN93KK0BYdZM2dCduXsz69oOemJyg4GK gek65MTC8CvBT0CPyEw4EkjkJW5c7vaNcGKEc+XGR9L6lfR4KiYuk7WkiCH8 2VywMwesqEyK/qUK9OoYKl+6iqoQrdRlDYQO88PBHLIyT2SO621MDm9IzRKJ 9fynj8wrisGflGuZeuO89UhG4mqdz0yJldtM98eI7oILY8O4SxWi9fRhNqvO KDLx4MZeerWe3bDH/PCOue48vbVKSL/dwoNoqCImDPpV4dOiAoVPZWv0KPmG bAUSwcSV10OM3qHasKLdAq+/dJtetNhV24sf4oh2ecoXUnNg2NJewXan3ITe NbEytkxKNjGqy2UVVToEDxw0fnvMk54QF+VpOMhUStwukERVcDSDTafYN4RV hAl0SjbB5Kw64g+fzlcdH2zgyMhSWnbDXoJTS9ZuvNY7Yv/VYh9HvAOcfKHO XgPoE1hUbAfUPvQR7Uzo+V2Cz8Dy1MkOM2kyIaK9iBrpNU3kqssXOzHpCUtk NkmZkf0Ib2f6JKR5fxBlDMeP8ygFwLZyCHMcLo6wlF5ttF7GCRVGyruKll6B 0w9kHOK9eofwLLK0kcVsB9R7ezUP646EuQ6mOI92PSNctengX/+uCPUWz9gE +iTAbldj3HeVdhCu+H9oFLmhAxFEGdVsrqbBF3s/er7I+Epo6Ea6lfcYQjlX FvtX1HNhTafFbsMCRqL1Hh+NmEJbSOl7ykkTsUJ4PfPJvOkLUWK3KJ35yR9n IL8LS9sqOspgzUNaKoeFVYmJ4+PxLdoBkIPIh/oi78fwQ9Ha8LHTBkS9CL42 Y89IqGOdUHHBrB7mZEttXHInE2vs7tyTLEqF7AqmT61VNsC13nwHSiT8iM6m evdDR+9CHmet823SWmCFOzIpno0xxB/3Kryvy1VBVXKv0oZXP8A2OhaGFuz5 xD2ZnJSgcxhUTO0aZU/shwGbu9HUSg1RxF5J6uizDqgUpQtCkVGYZr30Iwff Rrx+bPL+1LYRKEmIPWA6aRqmsCx1trt9IbbOcuYIu36H+GP2c11JXICXYsQn fD3ooHRpNLC0iQEO+a8kgzlrA86/Ca8ISW6HhBlLp0KV+OB6jQ7y+XFGZHa8 etu+xj2QlkJgrusNKZhJ8leNcBkHIvPVL2qZDUBGNIZrWowq8LQCq9U6xI9E MozSLFZsIc5d3EONvkSYLvJd02izKKLxSh9Vx3tBe5/dtu/9eBheOIsTHciV RtLItDsEt0hofVwylrPVDn5t+bxCaUoB8dXkdeD1yIFi5Hef7nzvBuNCk1mW WFSR1Y8vQLxEFeRT/s15vvsizErSsS3l10LmrbR1LjW8hdRpy05iE9FwNN3q sIAnhKylX/C6yDYCdR4948ZNnwHnNPjeVEEMkG07Q/hLl9egIufk59ck78Gq OkyfeAdNESZj7ZeYLB+calBRfkT/CVzVywwHBFghbeIt8UUUefjZ7k8FeN8m mLeG5kczJyNplZ4OxeeIcP1Rk+V3RV1wdJ4GzqTqNFJ9a/4oTsIS5v1sPMw7 OgZbdm7s4Eg7h5xzxhs0YG4w363U4Gr8EnydZcknYNUXmROGjtKzhcFjzIrl Me7MyMwwf7BdwmXEK2eNzLacDvfpCPLZ1QogGnOZHQ3wVcR4MR22lC2H9+Wz jS3zyCDvysWbtJJikENOpkH8lCa4rqd0m+IZNcSDdbsiY2IysqrRd0r/3CC8 I5mPubkRRvAFxayWtzIRxGzDNVh8CRbdU/EkX9EM4TZn2/Vj7DZSbF1uw4Nx IdIbyhmJySeRN7p12e6l95EZ1UydcJwMUi1gEezC4ImscbkwXIUqkBMM8RWO S9qI6cbZrB8+wYjskxRFqLkG+RKYRhuTMUOGvi2sW3THIZVN2zIouVRkL0ui x6WzLog/O9tAQksWYmPY5BYz2YwUmomfHXYPRiw/MTG6tJQg2QK9ehEsbYiR Z2PIys4UJH9ZbTKuqxbZJZZHEOT/iGSd0/WwppUg4RQ/V9r4a0TCN6uiyGMI YbLpkeHA0ZCdA6kp1F89yLjPz8uZ8BekvPUzW91iD9KTrVd6UGISeVomL3tv YA7Jde45eF5mHmFh0+QRI60iNbbZa1/8lxGTeBWXcVcc4C2JElnzxoFV5S/C ZHM68IiS5HvJXRJQT0zJFxcKgcWjqvbUShaATzmV77FTA4wdPBW08hkPvvoc fWyQygNsjFdTc18agx19wuqFshpgV3Co4PyKIGi4VSgZz+oEZF2p8uFuKOhr HH+eGy8OHj5LihZeDAQKlZEzdk8twFQobhGGZUFsii0TTiYRVOfR6uh4nEDv q6W64MQ9QGFv+cgR10Jg4vTQXsfFG2jcyDEPTtgHglrwiiLu9eAWXpZnsCEE fHuzSEzPPADCFPBXJnd0Ak4K+diL3YmABceFeY0hgBNuIMxSp0HPnrCv5Um5 oEUrmHDzgSFoPNm4KMrKhJZ8C5aPon8IrLMe+ncQzQFY7COFLIiiIwsHEoR9 6kHwC6bhX422QCNoIrZ4lyrqdV1a80xnC2CRQnXlchzAu9mq1dkzBqjUYrPq sbf9IPD9y4iq8TNg6dwGx4obGdUTUI6/+WYa3Ji9dWkHoxdQyqYh/Dv90DR5 K6H09g1wjfSpwIs9AEzbmxkz0WLQz+x059OHOFDPNyLZ7qeuAJnsupQlXD4K 3/SiURZF0RKbm/ZfZSJBVaft+/nVGlTGa/9rQa7daEbY2QmB6nhAVC2Mk1Ns Qxckv9nzymqh0pfP//zEnQoyvt2fnLz0BR2zG3w6qGGAar9q1e+MygaXPp2o 1omkI50T3vWKW8MKbS58V6uscQfsjj0S63ByO4mF+bkghe002qf5rub2tfvg wX9UHKOPMqmw/OvtfH8f9K5gpoePRxmgNnI3+X8FpGXNYIegz1dQw+mVQ5Le JaCc7mbRSWcrEkVl2C48LBwtW0rUmj4cS/ugUNk6YWRLmo9pq86/fBVtErYX HI4upJ2fCA0TXz9OwttX8RvvCkXvrl53O5FYTbvdvJ+6bcaO5BRiBqlzBKEM Pl55DgIYrWeoL1ys0J40hB874r4zELXQeP7xqeIbmtDI9WwdcTKpm7MsO2iv N+rMvhi4KveBpqmDCXMrkEldu/t4uq97oh8b7oB7wV00NRO85idVMin9baSz AOUcyvP4Y8V8QQ+t+idTjRBCJkVKjbAcbD6Favc7l6w1faZpnUl8j6BkkuRr mTd30xzRBUoTu4bIGG1y9Zunij6Z1Ka9FvVu50nUhunjxR2uEzSDDDvs9UEy qeNx39P5s1YolB4gFFk5T7v64jDSuumxN5D2fAMrtPW4TDWhbZ52kG26unPT DSeqnCVlN7293//C7DxN+Gx6Wt+ml4fJ6L5atkQFbMxLTQS/0z6qi3l+3fRo L6jpVJIlyqaU/kvh7HfawAl2Os5DZNKTnrnjAQ+PohJDLxIK9i/QPlsfafLY dKNdAxeoOmYoI+OXWRGhFZrg+KJFwqYfamWUT20wRfd7sbgUq67RXP4DnKWb vnZ8eoD5mAn67gMOtK5s0Lry6jgmNp1BXq+16j5AT09AO2eMmDEtJO783KbT y1GMj12HUR4tUeK+OlZs9PAxtuVNZ7crdeDCE9FjvE21AyQOjPLf5Zxfmz4a VxZJ1tZAF61GVF618WPL0TdpdIZk0m0CHFO6ooY+kopbi9i2HesryGyk3/To df/3Lygq6HhUZbPbIRHMZey+JOOmu2dU+yj/lENtZprPh9hJY8W8CSa/XfvL wmpPrCxavUqtrfaUwRIfIOd/e3tguklQizTaVRAAA3c57IxfSMlvN93OxVQ0 LoKW3/XQKWNUwdITah79dipq3IWRhFCuCyqFibOqmC1F6ulvX//ufzvssAC6 1jUH/CrUMVfrey9/u6Phsn33CgeaGKNnXR9KwDyU3tJ++1iKW7ORNBuqS9ZK JkdBmCR/C/bb69oljoXMMKNikL/GiDDAQlvLG377W9P6LgFGBlQ8pfbbJX8D bEJJufG3nz61zNlL/QFYm/JCX2UZY19JcX+8X3E0sf/lIljKO7SuT7TALjhm /fGLgerp9V3fQeQ2t+xwDUssBlf8x/WmdrdGVX0DVIX9R4jD1tiC+NM/jqMS s7U5p8GMR1sEzsYO26728o+HTRwXukT3BRx5N66PP+GAXY5r/uOk6fY5LG4I /KgvaVQWOYOdiXn1x2lZF24OMAyC+ZiCcquIs1i51+s/TnEMbLZO6QUbLXJx ezrdMWePN39ctUPZ9b5HF3jGpvmt7a0Xprfy1wVy3h83tmsH1JerQa0v/DA1 x7d//ICVbVq91Rvg7Gg4rC8ahA15//WfJRr9Kl3NgAs/lHub+wo2F/LXb5CP D8TxNoIMjqRwG7FQLD3prxMdV1TgSSrI8mPscTeOwMIz/3qtl8yQDvwcvKlT fR6udh2Luf3XK+OTubgGqkCsGI79OpqE3cn/6/9ddirH9zwCKY2rdWDXDSzv zl//ShRuCLlVDnaErdtdKUnFau7+dY91nPr38Adg7lZvyLXBTMy04K+P+mqo uGkVge793PrmAblY4z8XXj6rWe+TBwZDCNJvhgqwj/+86HE03+32HACV63S8 VbmHTf7zkytKO7ZzZIEAk8UXaVYl2MY/n310TdgoLw1IqbuIRow8xFgK//oU O+dcp20yMIecdwYWVGLc/1z1+cVK4+YYUDXGyn467RnG889V7mmvictHgwe1 DjOMOvXYtn9eO2hmYa0XCa4hT4cNlakY7z/vPO97Z3gwFHiFCJubKzVgfP+8 QhDlGqcEgx5aD0P+h1dbrq0qOg+z+YN45rV2L8u2LZ9nypnCTfqC/rD0BKad HRj/Pw/sPX1dO94bxI3+GHgW0bnlS+eGqJfYPcC8tb8aGvhpy2UYmwhHQlzB 8TD4S0TO4JY74bFop1OOoEGruCfoydiWe9DRv8WVngT5P9JL3n/9suWONgOu LYn24FfgonXs1NSWzzZs5F36bAMkrPXLo1i+bXnvDGWfrtNR8Nma9U5r+sKW L1umm5UYHwbUfaSc/QobWz4xm7pP/ZoRkGH+4Gf4+ef//8eX7noFHgR2BT91 nhrRN/yf77vr28I3AkCGvXe2tgjzlttNsurzIhBIjXkoXxXJtuU1e6IkimAt sOdEAMucF2/D/wCKFAy/ "]}, {Automatic}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{ 3.8291201285159287`*^9, 3.829120245716654*^9, 3.8291218614871483`*^9, 3.8291219075503416`*^9, {3.8291219705573235`*^9, 3.829122012814124*^9}, 3.8291220477949333`*^9, {3.8291221075878396`*^9, 3.8291221277201943`*^9}, { 3.829122173765093*^9, 3.829122195213818*^9}, 3.8291223696476355`*^9, 3.8291225435908604`*^9, {3.82912258426115*^9, 3.829122600792024*^9}, 3.8291226328297663`*^9, 3.829122817786496*^9, 3.8291230181511717`*^9, { 3.8291231183550186`*^9, 3.82912315549702*^9}, 3.8291232414258842`*^9, 3.8291233296865864`*^9, 3.8292092920491*^9, {3.8297197745096107`*^9, 3.8297198314424176`*^9}, {3.8297199241953573`*^9, 3.8297199568509254`*^9}, {3.829719988249735*^9, 3.8297200177963037`*^9}, { 3.829720401050322*^9, 3.829720440702504*^9}, {3.8297205493769493`*^9, 3.829720558179673*^9}, 3.8297207331762705`*^9, {3.8297208009823823`*^9, 3.8297208175396943`*^9}, {3.829720874977733*^9, 3.8297209000503297`*^9}, 3.829720953023508*^9, 3.829721453943768*^9, 3.829722072897905*^9, { 3.8298140411016645`*^9, 3.829814085428067*^9}, 3.830417110921895*^9, { 3.830417452941005*^9, 3.830417480375204*^9}, 3.830417539609968*^9, { 3.830424616775671*^9, 3.8304246337771864`*^9}, 3.830424805148509*^9, 3.8304248629662895`*^9, 3.830425069426553*^9, {3.830425130298489*^9, 3.830425158702415*^9}, 3.8304253419940248`*^9, 3.8304271003293004`*^9, 3.8304272318252707`*^9, {3.830427340986052*^9, 3.8304273644745874`*^9}, 3.8304274228212934`*^9, 3.8304275476353617`*^9, 3.830929080012417*^9, { 3.8309291597115946`*^9, 3.830929174101644*^9}, 3.83092921324753*^9, 3.8309293917967215`*^9, 3.8309294742180257`*^9, 3.830929519372074*^9, 3.8309295571190257`*^9, 3.830929736688035*^9, 3.830930152117041*^9, 3.8309303958002186`*^9, {3.830930426239358*^9, 3.830930451746625*^9}, 3.830931479233889*^9, {3.830932164225087*^9, 3.830932196962861*^9}, 3.8309322587077427`*^9, 3.830932313035307*^9, 3.830932744637131*^9, 3.8309471567551756`*^9}, CellLabel->"Out[91]=",ExpressionUUID->"b5a6f2bd-6ae8-4d20-8534-93e8a88b59c9"] }, Open ]], Cell["And for n=1.5:", "Text", CellChangeTimes->{{3.830931125822937*^9, 3.8309311309019504`*^9}},ExpressionUUID->"4949072c-3b31-4446-af76-\ 84db351c9cde"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Soln2", "=", RowBox[{"NDSolveValue", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ FractionBox["1", SuperscriptBox["r", "2"]], " ", RowBox[{"(", RowBox[{"1", "-", FractionBox[ RowBox[{"2", " ", "G", " ", RowBox[{"\[Mu]", "[", "r", "]"}]}], RowBox[{ SuperscriptBox["c", "2"], " ", "r"}]]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"r", " ", RowBox[{"(", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"K", "[", "n2", "]"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n2", "+", "1"}], "n2"]]}], ",", "r"}], "]"}], "/", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", RowBox[{"(", RowBox[{ RowBox[{ FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], " ", SuperscriptBox["c", "2"]}], "+", RowBox[{ RowBox[{"K", "[", "n2", "]"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n2", "+", "1"}], "n2"]]}]}], ")"}]}], ")"}]}], ")"}]}], "+", "1"}], ")"}]}], "-", FractionBox["1", SuperscriptBox["r", "2"]]}], "==", RowBox[{ FractionBox[ RowBox[{"8", " ", "\[Pi]", " ", "G", " "}], SuperscriptBox["c", "4"]], " ", RowBox[{"K", "[", "n2", "]"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"\[Mu]", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n2", "+", "1"}], "n2"]]}]}], "}"}], "&&", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "[", "\[Epsilon]", "]"}], "\[Equal]", RowBox[{ FractionBox["4", "3"], " ", "\[Pi]", " ", "\[Rho]0", " ", SuperscriptBox["\[Epsilon]", "3"]}]}], "}"}], "&&", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Mu]", "'"}], "[", "\[Epsilon]", "]"}], "\[Equal]", RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["\[Epsilon]", "2"], " ", "\[Rho]0"}]}], "}"}]}], "}"}], ",", "\[Mu]", ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "R"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "MachinePrecision"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}]}]], "Input", CellChangeTimes->{{3.8284404269494495`*^9, 3.828440441248051*^9}, { 3.8284417789652925`*^9, 3.828441779204199*^9}, {3.8284418137257013`*^9, 3.82844181405908*^9}, {3.829209096820998*^9, 3.8292091040794096`*^9}, { 3.829209178621271*^9, 3.8292091820912466`*^9}, {3.8297210981117*^9, 3.829721101130823*^9}, {3.829721140144243*^9, 3.8297211447094707`*^9}, { 3.830424645009803*^9, 3.83042468675322*^9}, 3.830424870488453*^9, { 3.8304274757975163`*^9, 3.830427479895006*^9}, {3.830929573946224*^9, 3.830929598940914*^9}, 3.830929731189261*^9, {3.8309301847786913`*^9, 3.830930185333043*^9}, {3.83093146238196*^9, 3.8309314648057966`*^9}, { 3.8309323223602266`*^9, 3.8309323271315794`*^9}}, CellLabel->"In[92]:=",ExpressionUUID->"b9995737-7ac3-486f-aa9f-8e805b9036f8"], Cell[BoxData[ TemplateBox[{ "NDSolveValue", "ndsz", "\"At \\!\\(\\*RowBox[{\\\"r\\\"}]\\) == \ \\!\\(\\*RowBox[{\\\"50033.642180054856`\\\"}]\\), step size is effectively \ zero; singularity or stiff system suspected.\"", 2, 92, 14, 20422980492700890382, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{ 3.830427480488017*^9, {3.8309296005304313`*^9, 3.8309296223674603`*^9}, 3.830929739022107*^9, 3.8309301544179296`*^9, 3.8309301859621115`*^9, 3.830930456655142*^9, 3.830931484234265*^9, 3.830932200026952*^9, 3.830932327961217*^9, 3.830932750190138*^9, 3.8309471617120705`*^9}, CellLabel-> "During evaluation of \ In[92]:=",ExpressionUUID->"0f02107a-9437-4eba-8641-4d301b75c2cb"], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["InterpolatingFunction", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`*^-10", ",", "50033.642180054856`"}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`*^-10", ",", "50033.642180054856`"}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Order: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Method: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"Hermite\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Periodic: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["False", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], InterpolatingFunction[{{1.*^-10, 50033.642180054856`}}, { 5, 15, 2, {159}, {4}, 0, 0, 0, 0, Automatic, {}, {}, False}, CompressedData[" 1:eJwlxX0803kcAHBzTYRQjtPjREJY0ejm9v1+snR1yFHWVs5lQspTushDnVsi ojykkzyk6EUupC06qXbLqnXpSsXVq1qF/dwJy/Tksvtt++P9etvyE4Ij9fX0 9CikalJHZ+/fLzKeshIrz92US5+zOLmtfhG9ctbMrGO/WHBfs2axJSri7hDr ktx1rlXIOMttqsUwRD3Jmrx1XWpvMg3Z7ApcWZ9igq6wwwnKfEuUE/TtSzp3 HjK8LUlOVdohGPEeNjN2QY1RP2xLFXkgK86f44Wt3qjZadumu3vYiBGTaWfI 9UPrrTPwfcYGpPcdre7p580oZnSx0Y/v+Kj1bQ1RW7sDPQjZp25sS0I8ZrYq xz8NVamS8iSpAjQ87S0jbyIXLbIb+FTzTTFqdxt0T68+gXLPqsai1DXI6vkZ xWV2A+IMhAwXXbiA9pcbx44K29FZA0O/bE8xOh7gNHJr4iaCkOSZAY1/IeZH 72unlvUiuejTOLKVozmc7DGbxEG0nHbgdqznKJrNWSA4LppApfzO82PuU2hs hlmhDYWKA04XC595meK5Jf7z9wZb4rBLHlXK1fOwWB0VI2iww4stxbQh3lJs +fLLBCMDD/wYt4kEyUzsdr+15EW0D/Yv7RjaX74O57uYCPu6g7D5H8A51cXF yXYr58qY4di5uay48X00dpFFp+Q1JuKC9GL76GUpOLY+qVtJy8S+hYMJJxOy sR21r7+VcRTXZUWenSUqxR/3rh3xcq/Cp+Uf2sv06vDJ3p4AZ6/zuHe0dt1k kBA/6pquYq++gmdESiuNGiR4jZmp9SreHRz4zvjoMWoPnjbgaSvf8wT/1DCy Pz76FdbP3Fzx8sQQPoNX++3sVuJ/Ow7ZG3Z9wIY5LbCVSYG1Jckbv3o/Ha5n OJnbN5pD9aR5Wx/dGmoXlHYdodGgPGzmdYsEB1iiH1g0voIOw/rbnhQIGWDw ok/583IEKfdaxTZ6vrC7ZG14hmcAWFQYvT0YtBEEfOf0c+xQWOQrpvxWHwEO Zfner7g7oeLyVhcBdTcYZK5qXpOcBlvGwjfxtwvgKm1ODrUyF8J4TTKTniIY 4EtHZz8ogzBhoHWEfw1sqEZOKY71cLD8jd8/Iy2wcly0iTncBrZd0PucLoZE n0OO/MnbEDURAcoDPRAaedXvOP0ZZK1n0c/l9QOXfiek30ABqGEwLrRSAZkq 4kjzRwUwgw9WMSYVYLDblN3+nwKK1nFyfp1SwKhvzb4VVAI+O6tFhfMIeKiQ Ne0KJqBW9q7CJIyAhKGL2z0iCWiy/dpKuZ0As2vcS5QYAh5nWFFmkWexCexA 7lF6URJHPvXGib9jBwFJal6FPJaAuC0++YlxBDxrcWVIybsXN0lV5KykjE7z eAJuPP0sW0jOPfr9iCO5l+KwzJW837T/5jLyFhtrnjv5o+6+DR7klifVDzVv jHbgrCAvvLUwXjOX+iFNs0Vmt0DzofrxbM0NaVm5mu3jnuRpDpVeOKz5nmRh vmYfcYF2Fe+09n2S89oLUoXaFUvbtRuH/q494kiHdnvfK9qZ9bqJ17rffNGp Pd5a9w1b3Uscdacv1V3iqrvOTXc7Xff/Hv5e0A== "], {Developer`PackedArrayForm, CompressedData[" 1:eJwl0Q1HHQAAheHbUppN05SyLF2bpZSmaUrZlGbZNFvNptmUZrMpZSmbTbNZ SmnKUjab9WHTNMtmaZZNUzZls5Sl2TRixBgREWN7ssPzB84brKgprg4JBAK9 gf8LJZyNbGYLW4khjngSCLKTJFJIYzd72Es2uewnnwMUcpgjHOM4JznFGco5 y3kuUkUNtdRzhWtc5yaNNNPKbTropJt7PKCHfh7zhKcM8YJhXjHKW94xwQem +MQ0s8zxle/8YJGfLPGL3yyzwipr/OEvGxwcRgSbiCSKaGLZxnYS2cEukkkl nQwyySKHfeRRwEEOUcRRSjhBKacpo4JzXKCS9eCXqOMyV2ngBrdoooU22rlD F3e5z0P6eMQAgzzjOS8Z4TVvGGOc90zykc/M8IV5vrHAP7mcTa4= "], { Complex[2.0943951023931955`*^-12, 0.], Complex[0.06283185307179587, 0.], Complex[1.2566370614359171`*^9, 0.], Complex[2.9397631767740877`*^-12, 0.], Complex[0.07876785566574614, 0.], Complex[1.4070011115630312`*^9, 0.], Complex[3.8535454465798534`*^-12, 0.], Complex[0.09434403548630114, 0.], Complex[1.5398455189259884`*^9, 0.], Complex[5.8394117211557805`*^-12, 0.], Complex[0.124466799850046, 0.], Complex[1.7686695172603352`*^9, 0.], Complex[1.386140177733613*^-11, 0.], Complex[0.22148563283334316`, 0.], Complex[2.359351833703408*^9, 0.], Complex[4.6630951288309044`*^-11, 0.], Complex[0.4972677654677116, 0.], Complex[3.535208893686684*^9, 0.], Complex[1.4163538755142175`*^-10, 0.], Complex[1.0429303531534215`, 0.], Complex[5.119736154138841*^9, 0.], Complex[4.159925749735181*^-10, 0.], Complex[2.138936259414392, 0.], Complex[7.331939073077413*^9, 0.], Complex[1.1911129765935547`*^-9, 0.], Complex[4.31296658928024, 0.], Complex[1.0411372201622879`*^10, 0.], Complex[3.3608545067265635`*^-9, 0.], Complex[8.612064310557917, 0.], Complex[1.4712062371983667`*^10, 0.], Complex[9.405990921106867*^-9, 0.], Complex[17.103191542340856`, 0.], Complex[2.07328260883598*^10, 0.], Complex[2.6210630180067194`*^-8, 0.], Complex[33.868224587985694`, 0.], Complex[2.9175354397864597`*^10, 0.], Complex[7.287394560641756*^-8, 0.], Complex[66.96619837677692, 0.], Complex[4.102492038565582*^10, 0.], Complex[2.0237883361005985`*^-7, 0.], Complex[132.30741402620188`, 0.], Complex[5.7664962598574394`*^10, 0.], Complex[5.616967019704244*^-7, 0.], Complex[261.3015812554835, 0.], Complex[8.103841584149826*^10, 0.], Complex[1.558506171281209*^-6, 0.], Complex[515.9565608445158, 0.], Complex[1.1387450264191354`*^11, 0.], Complex[4.323636206971441*^-6, 0.], Complex[1018.6857199993, 0.], Complex[1.6000738675427408`*^11, 0.], Complex[0.000011993785711585372`, 0.], Complex[2011.1523841014239`, 0.], Complex[2.2482386625544128`*^11, 0.], Complex[0.0000332695141790524, 0.], Complex[3970.4380775845475`, 0.], Complex[3.1589237007572644`*^11, 0.], Complex[0.00009228434552251091, 0.], Complex[7838.3769560213905`, 0.], Complex[4.43846699797349*^11, 0.], Complex[0.00025597954327465734`, 0.], Complex[15474.29816165359, 0.], Complex[6.236277074657476*^11, 0.], Complex[0.0007100358481519121, 0.], Complex[30548.810499326013`, 0.], Complex[8.76227893143471*^11, 0.], Complex[0.0019694917466127346`, 0.], Complex[60308.27370456916, 0.], Complex[1.2311426314193462`*^12, 0.], Complex[0.005462952437319771, 0.], Complex[119058.13259874139`, 0.], Complex[1.7298141863198477`*^12, 0.], Complex[0.01515304307935967, 0.], Complex[235039.41198703178`, 0.], Complex[2.4304700117720103`*^12, 0.], Complex[0.04203084971461705, 0.], Complex[464001.69439581747`, 0.], Complex[3.4149134721127686`*^12, 0.], Complex[0.11657556286319645`, 0.], Complex[915965.5368063572, 0.], Complex[4.797991643134396*^12, 0.], Complex[0.32318959860101304`, 0.], Complex[1.8076417755547815`*^6, 0.], Complex[6.740251548678403*^12, 0.], Complex[0.8940131370045893, 0.], Complex[3.5620776814198396`*^6, 0.], Complex[9.461753139319703*^12, 0.], Complex[2.4566876341957724`, 0.], Complex[6.988340846727695*^6, 0.], Complex[1.325277909714942*^13, 0.], Complex[6.688785345671173, 0.], Complex[1.3626122580867296`*^7, 0.], Complex[1.850572333575072*^13, 0.], Complex[18.094958320661902`, 0.], Complex[2.645528900043609*^7, 0.], Complex[2.5785536637477895`*^13, 0.], Complex[48.80391001749285, 0.], Complex[5.125983419804871*^7, 0.], Complex[3.5892897393803664`*^13, 0.], Complex[131.46762418112834`, 0.], Complex[9.923997851672836*^7, 0.], Complex[4.994169171482058*^13, 0.], Complex[353.9797933637732, 0.], Complex[1.92070101529989*^8, 0.], Complex[6.947839884903394*^13, 0.], Complex[952.9304610497957, 0.], Complex[3.7169061141402787`*^8, 0.], Complex[9.665197077873981*^13, 0.], Complex[2565.16463690924, 0.], Complex[7.19257304041379*^8, 0.], Complex[1.3445038756919803`*^14, 0.], Complex[6904.919139263171, 0.], Complex[1.3918096692693207`*^9, 0.], Complex[1.8702938358409103`*^14, 0.], Complex[18586.51556729654, 0.], Complex[2.6932258297639275`*^9, 0.], Complex[2.601694525562485*^14, 0.], Complex[50030.620201809215`, 0.], Complex[5.211523599492461*^9, 0.], Complex[3.619114070344822*^14, 0.], Complex[134670.73928009046`, 0.], Complex[1.0084544351220646`*^10, 0.], Complex[5.034403925474508*^14, 0.], Complex[362501.9929067941, 0.], Complex[1.9514063612449173`*^10, 0.], Complex[7.003155589430065*^14, 0.], Complex[975770.0374304429, 0.], Complex[3.776061880813376*^10, 0.], Complex[9.741805808589931*^14, 0.], Complex[2.6265430841050716`*^6, 0.], Complex[7.306854675125793*^10, 0.], Complex[1.3551430792945102`*^15, 0.], Complex[7.070035089439251*^6, 0.], Complex[1.4139102074508298`*^11, 0.], Complex[1.885084538189287*^15, 0.], Complex[1.9030868403807625`*^7, 0.], Complex[2.7359816961061926`*^11, 0.], Complex[2.6222645870538855`*^15, 0.], Complex[5.122661281589523*^7, 0.], Complex[5.2942512001822473`*^11, 0.], Complex[3.6477258245130935`*^15, 0.], Complex[1.3788996925289*^8, 0.], Complex[1.0244621080472493`*^12, 0.], Complex[5.074203325598885*^15, 0.], Complex[3.7116730132291055`*^8, 0.], Complex[1.9823815902653142`*^12, 0.], Complex[7.058518275390737*^15, 0.], Complex[9.990949025965704*^8, 0.], Complex[3.8360001168328145`*^12, 0.], Complex[9.818818251131414*^15, 0.], Complex[2.6893280265116425`*^9, 0.], Complex[7.422837754400025*^12, 0.], Complex[1.365855950754984*^16, 0.], Complex[7.239037262932742*^9, 0.], Complex[1.436353457357212*^13, 0.], Complex[1.8999867703643424`*^16, 0.], Complex[1.94857822982297*^10, 0.], Complex[2.779410411015772*^13, 0.], Complex[2.642994471432166*^16, 0.], Complex[5.2451133790740135`*^10, 0.], Complex[5.378287771913553*^13, 0.], Complex[3.676562324711329*^16, 0.], Complex[1.4118609101296902`*^11, 0.], Complex[1.0407235729715053`*^14, 0.], Complex[5.1143166089877976`*^16, 0.], Complex[3.80039684067218*^11, 0.], Complex[2.0138482765705894`*^14, 0.], Complex[7.114318234072856*^16, 0.], Complex[1.0229772662378425`*^12, 0.], Complex[3.8968896116365375`*^14, 0.], Complex[9.896439309367774*^16, 0.], Complex[2.75361371946176*^12, 0.], Complex[7.540661741596364*^14, 0.], Complex[1.3766535007985656`*^17, 0.], Complex[7.412079192725118*^12, 0.], Complex[1.459152943411547*^15, 0.], Complex[1.915006803448793*^17, 0.], Complex[1.9951570423743504`*^13, 0.], Complex[2.823528474565816*^15, 0.], Complex[2.663888231136744*^17, 0.], Complex[5.370492568154672*^13, 0.], Complex[5.463658268476896*^15, 0.], Complex[3.7056267863458464`*^17, 0.], Complex[1.445610031620208*^14, 0.], Complex[1.05724315844097*^16, 0.], Complex[5.1547470000756595`*^17, 0.], Complex[3.891241519188166*^14, 0.], Complex[2.045814437902298*^16, 0.], Complex[7.170559308060645*^17, 0.], Complex[1.0474305102299216`*^15, 0.], Complex[3.958745606699963*^16, 0.], Complex[9.974673976163712*^17, 0.], Complex[2.8194360899474505`*^15, 0.], Complex[7.66035595540142*^16, 0.], Complex[1.387536407749008*^18, 0.], Complex[7.589257495778466*^15, 0.], Complex[1.482314326876488*^17, 0.], Complex[1.9301455728878067`*^18, 0.], Complex[2.042849261870553*^16, 0.], Complex[2.8683468193765974`*^17, 0.], Complex[2.6849471565527485`*^18, 0.], Complex[5.4988687851458696`*^16, 0.], Complex[5.550383840336527*^17, 0.], Complex[3.7349210019584435`*^18, 0.], Complex[1.480165886725247*^17, 0.], Complex[1.0740249591628088`*^18, 0.], Complex[5.195496994893274*^18, 0.], Complex[3.9842577233948544`*^17, 0.], Complex[2.078287993317289*^18, 0.], Complex[7.22724495558193*^18, 0.], Complex[1.0724682824167227`*^18, 0.], Complex[4.021583441804426*^18, 0.], Complex[1.0053527065496242`*^19, 0.], Complex[2.8868318629055427`*^18, 0.], Complex[7.781950047510162*^18, 0.], Complex[1.398505333877138*^19, 0.], Complex[7.770671034292243*^18, 0.], Complex[1.505843342652022*^19, 0.], Complex[1.94540398587495*^19, 0.], Complex[2.091681512574083*^19, 0.], Complex[2.913876540691466*^19, 0.], Complex[2.70617247584033*^19, 0.], Complex[5.6303137012525605`*^19, 0.], Complex[5.638485907527003*^19, 0.], Complex[3.764446574765664*^19, 0.], Complex[1.5155477652978762`*^20, 0.], Complex[1.0910730989513055`*^20, 0.], Complex[5.236568534408519*^19, 0.], Complex[4.079497442665478*^20, 0.], Complex[2.1112768708616615`*^20, 0.], Complex[7.284377145471243*^19, 0.], Complex[1.098104581220889*^21, 0.], Complex[4.085418189188251*^20, 0.], Complex[1.0132999253953615`*^20, 0.], Complex[2.9558388038678306`*^21, 0.], Complex[7.905472291514882*^20, 0.], Complex[1.4095598285911767`*^20, 0.], Complex[7.956421753242378*^21, 0.], Complex[1.5297451079277986`*^21, 0.], Complex[1.960779936500712*^20, 0.], Complex[2.1416813887253253`*^22, 0.], Complex[2.9601262176836057`*^21, 0.], Complex[2.7275572791563544`*^20, 0.], Complex[5.764902385968661*^22, 0.], Complex[5.727976115098414*^21, 0.], Complex[3.794183177673386*^20, 0.], Complex[1.5517762899335074`*^23, 0.], Complex[1.1083879768469799`*^22, 0.], Complex[5.277904503339118*^20, 0.], Complex[4.1770182847613435`*^23, 0.], Complex[2.14477487553948*^22, 0.], Complex[7.341798757849781*^20, 0.], Complex[1.1243560421134536`*^24, 0.], Complex[4.150211864963707*^22, 0.], Complex[1.0212663026884934`*^21, 0.], Complex[3.026507516399821*^24, 0.], Complex[8.030751747471786*^22, 0.], Complex[1.4205841690621753`*^21, 0.], Complex[8.146676380989357*^24, 0.], Complex[1.553950082139743*^23, 0.], Complex[1.9759610455773946`*^21, 0.], Complex[2.1929096505375707`*^25, 0.], Complex[3.0068247393523808`*^23, 0.], Complex[2.748259502067634*^21, 0.], Complex[5.902881169361458*^25, 0.], Complex[5.817818586782375*^23, 0.], Complex[3.821862588292513*^21, 0.], Complex[1.58896087558999*^26, 0.], Complex[1.1255776920575224`*^24, 0.], Complex[5.313397645287718*^21, 0.], Complex[4.277339382240152*^26, 0.], Complex[2.1773067156194066`*^24, 0.], Complex[7.383070599801271*^21, 0.], Complex[1.1514794038257338`*^27, 0.], Complex[4.2104245408198606`*^24, 0.], Complex[1.0248280994360286`*^22, 0.], Complex[3.100138869285688*^27, 0.], Complex[8.137009953742569*^24, 0.], Complex[1.4196792723066432`*^22, 0.], Complex[8.348115962682244*^27, 0.], Complex[1.5706682113939605`*^25, 0.], Complex[1.9589648894173274`*^22, 0.], Complex[2.248824471523252*^28, 0.], Complex[3.0247623312994853`*^25, 0.], Complex[2.6824386092946717`*^22, 0.], Complex[6.062247959063239*^28, 0.], Complex[5.7984043619247295`*^25, 0.], Complex[3.6177200137325007`*^22, 0.], Complex[1.636530878885345*^29, 0.], Complex[1.101442235233237*^26, 0.], Complex[4.731320011682763*^22, 0.], Complex[4.4306704279815015`*^29, 0.], Complex[2.0535077953841023`*^26, 0.], Complex[5.7964629937236935`*^22, 0.], Complex[1.207991535869443*^30, 0.], Complex[3.676951193347721*^26, 0.], Complex[6.0797329786593985`*^22, 0.], Complex[3.4231217307094754`*^30, 0.], Complex[5.978226156147624*^26, 0.], Complex[3.686147086428527*^22, 0.], Complex[7.836469704103227*^30, 0.], Complex[6.651972582713445*^26, 0.], Complex[-1.4205205148751385`*^22, 0.], Complex[1.314731900473645*^31, 0.], Complex[3.802773486190188*^26, 0.], Complex[-3.205356005592671*^22, 0.], Complex[1.5763962192670153`*^31, 0.], Complex[8.213622906580872*^25, 0.], Complex[-1.6313395419265362`*^22, 0.], Complex[1.6000649374939018`*^31, 0.], Complex[1.700335374130106*^25, 0.], Complex[-9.006665679420471*^21, 0.], Complex[1.6015106380388517`*^31, 0.], Complex[7.466314129790122*^24, 0.], Complex[-6.75732244309688*^21, 0.], Complex[1.6018927322181334`*^31, 0.], Complex[3.0953641833102876`*^24, 0.], Complex[-5.002137760032758*^21, 0.], Complex[1.601896468204662*^31, 0.], Complex[3.0345951996942907`*^24, 0.], Complex[-4.968615002838759*^21, 0.], Complex[1.6019000985930124`*^31, 0.], Complex[2.9747632658115384`*^24, 0.], Complex[-4.935181102834311*^21, 0.], Complex[1.6019044987258253`*^31, 0.], Complex[2.90116075016123*^24, 0.], Complex[-4.893448251109412*^21, 0.], Complex[1.601919169463165*^31, 0.], Complex[2.6462242891578067`*^24, 0.], Complex[-4.743343027326049*^21, 0.], Complex[1.601960661491691*^31, 0.], Complex[1.8119635533234792`*^24, 0.], Complex[-4.173577281039691*^21, 0.], Complex[1.6020047589613936`*^31, 0.], Complex[3.5828324614177596`*^23, 0.], Complex[-2.42215542150483*^21, 0.], Complex[1.602007118846436*^31, 0.], Complex[1.5896900552197677`*^23, 0.], Complex[-1.84594052370966*^21, 0.], Complex[1.6020077500128115`*^31, 0.], Complex[6.612113296703477*^22, 0.], Complex[-1.377259889987132*^21, 0.], Complex[1.6020078907511116`*^31, 0.], Complex[2.9545226420404523`*^22, 0.], Complex[-1.0526610457434502`*^21, 0.], Complex[1.6020078922719453`*^31, 0.], Complex[2.900001219796263*^22, 0.], Complex[-1.046141116325697*^21, 0.], Complex[1.6020078937348738`*^31, 0.], Complex[2.8469031799686664`*^22, 0.], Complex[-1.0397124605242658`*^21, 0.], Complex[1.6020078955152648`*^31, 0.], Complex[2.7813779986687837`*^22, 0.], Complex[-1.0316681938982514`*^21, 0.], Complex[1.6020079014759523`*^31, 0.], Complex[2.5540343038085958`*^22, 0.], Complex[-1.0027379296203253`*^21, 0.], Complex[1.6020079186244464`*^31, 0.], Complex[1.8048832116178414`*^22, 0.], Complex[-8.930985874916542*^20, 0.], Complex[1.6020079389207272`*^31, 0.], Complex[3.7430667257580786`*^21, 0.], Complex[-5.285512611964147*^20, 0.], Complex[1.6020079401097295`*^31, 0.], Complex[1.6387176262366472`*^21, 0.], Complex[-4.013250519890177*^20, 0.], Complex[1.6020079404157448`*^31, 0.], Complex[6.921782777558621*^20, 0.], Complex[-3.011095197607396*^20, 0.], Complex[1.6020079404869701`*^31, 0.], Complex[3.0413374539431294`*^20, 0.], Complex[-2.2891174659776915`*^20, 0.], Complex[1.6020079405054867`*^31, 0.], Complex[1.2796730237413356`*^20, 0.], Complex[-1.7153116558214332`*^20, 0.], Complex[1.6020079405097496`*^31, 0.], Complex[5.647292334066618*^19, 0.], Complex[-1.3059355611139614`*^20, 0.], Complex[1.6020079405108712`*^31, 0.], Complex[2.365061952922174*^19, 0.], Complex[-9.770605112926021*^19, 0.], Complex[1.602007940511126*^31, 0.], Complex[1.0492509317471257`*^19, 0.], Complex[-7.451891510171733*^19, 0.], Complex[1.602007940511194*^31, 0.], Complex[4.36944153417958*^18, 0.], Complex[-5.564784796776508*^19, 0.], Complex[1.6020079405112094`*^31, 0.], Complex[1.9509681423874207`*^18, 0.], Complex[-4.253269916392832*^19, 0.], Complex[1.6020079405112135`*^31, 0.], Complex[8.06917516350957*^17, 0.], Complex[-3.16895317159075*^19, 0.], Complex[1.6020079405112144`*^31, 0.], Complex[3.631154284406477*^17, 0.], Complex[-2.42840406179834*^19, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[5.880237945371213*^16, 0.], Complex[-1.323643280873023*^19, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[2.469651211847318*^16, 0.], Complex[-9.912530184390048*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.0921318437930078`*^16, 0.], Complex[-7.552040895359963*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[4.563696908546625*^15, 0.], Complex[-5.646052395149474*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[2.0297512353019495`*^15, 0.], Complex[-4.3097648602824817`*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[8.4300147503601*^14, 0.], Complex[-3.2155017334914606`*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[3.775518565009318*^14, 0.], Complex[-2.460168419735565*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.556509623788029*^14, 0.], Complex[-1.8310065827229775`*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[7.030411393122045*^13, 0.], Complex[-1.4048594647649638`*^18, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.1627916253588594`*^13, 0.], Complex[-7.711519011493248*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[4.948500421772623*^12, 0.], Complex[-5.80047873573165*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[2.156236301350754*^12, 0.], Complex[-4.397488910305709*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[9.154979465717524*^11, 0.], Complex[-3.3051544581850214`*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[3.999495449449175*^11, 0.], Complex[-2.507885497984833*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.6933474183888995`*^11, 0.], Complex[-1.883163343091852*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[7.420887520405096*^10, 0.], Complex[-1.4304013722888304`*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[3.1312928874967224`*^10, 0.], Complex[-1.0728702406216915`*^17, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.3774730231234554`*^10, 0.], Complex[-8.159564927053126*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[5.788587037414422*^9, 0.], Complex[-6.1117205854802856`*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[2.558183105817165*^9, 0.], Complex[-4.6553232676180696`*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.0697289186001971`*^9, 0.], Complex[-3.481212604212384*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[4.7540010563423216`*^8, 0.], Complex[-2.656597296872645*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.9760944729922658`*^8, 0.], Complex[-1.982630895769417*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[8.84182340015073*^7, 0.], Complex[-1.5164214323713592`*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[3.648848197825347*^7, 0.], Complex[-1.1289929597752472`*^16, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[1.6461896086496554`*^7, 0.], Complex[-8.658963728299433*^15, 0.], Complex[1.6020079405112148`*^31, 0.], Complex[2.704876170498658*^6, 0.], Complex[-4.742657521948469*^15, 0.]}}, {Automatic}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{ 3.8292092975121894`*^9, 3.8297210671686525`*^9, 3.8297211456471624`*^9, 3.829721459564438*^9, 3.82972208358914*^9, 3.8298234859331617`*^9, 3.830417122035535*^9, {3.830417456723611*^9, 3.830417482874754*^9}, 3.8304175422369556`*^9, {3.8304246747443533`*^9, 3.830424687579133*^9}, 3.8304248069556036`*^9, 3.8304248818794174`*^9, 3.830425160631522*^9, 3.8304253440347805`*^9, 3.8304271026041765`*^9, 3.830427235320843*^9, 3.8304274804992657`*^9, {3.8309296005383253`*^9, 3.8309296223804207`*^9}, 3.8309297390499516`*^9, 3.8309301544179296`*^9, 3.8309301859621115`*^9, 3.830930456655142*^9, 3.8309314842748137`*^9, 3.8309322000425806`*^9, 3.830932327977069*^9, 3.830932750190138*^9, 3.8309471617120705`*^9}, CellLabel->"Out[92]=",ExpressionUUID->"2f06c921-534d-4650-ab7a-4b965ef0f2e0"] }, Open ]], Cell["\<\ To understand a numerical solution one should plot it. Below we present the \ graph of \[Mu] as a function of the radius r:\ \>", "Text", CellChangeTimes->{{3.8309311428742304`*^9, 3.8309312064696646`*^9}, { 3.8309320201726046`*^9, 3.830932039312266*^9}, {3.831097866774798*^9, 3.8310979183027916`*^9}},ExpressionUUID->"f56dad61-d480-4c70-8346-\ b7ea1efbd56f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Soln1", "[", "r", "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "21790"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Soln2", "[", "r", "]"}], ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "50000"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", "Orange"}]}], "]"}]}], "Input", CellChangeTimes->{{3.8284406822845993`*^9, 3.8284407517811403`*^9}, { 3.828441756243474*^9, 3.8284417633092113`*^9}, {3.8291229486094837`*^9, 3.829122959853834*^9}, {3.82920924231246*^9, 3.829209279966999*^9}, { 3.829276087038735*^9, 3.829276087107114*^9}, {3.8297210319651213`*^9, 3.8297210496227355`*^9}, {3.829721185371204*^9, 3.8297211867688313`*^9}, { 3.8297212480975027`*^9, 3.8297213108593884`*^9}, {3.8297213536633587`*^9, 3.829721381441371*^9}, {3.8297214673914375`*^9, 3.8297214762673492`*^9}, { 3.8297221053502674`*^9, 3.829722106811528*^9}, {3.8298234777706275`*^9, 3.8298234784029236`*^9}, {3.8304171283141212`*^9, 3.83041714835222*^9}, { 3.8304174602666683`*^9, 3.830417461471444*^9}, {3.8304174935836525`*^9, 3.8304175233181677`*^9}, 3.830423554170858*^9, {3.830424696657152*^9, 3.830424698162859*^9}, {3.8304248950312834`*^9, 3.830424904038515*^9}, { 3.8304251792729244`*^9, 3.830425188556367*^9}, {3.8309296432651024`*^9, 3.8309296523394113`*^9}, {3.8309296870003405`*^9, 3.830929721043519*^9}, { 3.8309297565216446`*^9, 3.8309297676296854`*^9}, {3.830930114902444*^9, 3.830930126315235*^9}, {3.8309301618984528`*^9, 3.8309301759969397`*^9}, 3.8309304674362984`*^9, 3.830932485511557*^9, {3.830947109629006*^9, 3.8309471296545973`*^9}, {3.8309471747398357`*^9, 3.8309472155869412`*^9}}, CellLabel->"In[95]:=",ExpressionUUID->"46a7b7d3-fdc0-4fef-962d-8ea6ab7c85b9"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV12c8Ff77BnCr8rNDZSQpZQtlj26cz0eiEiLznFBGsiKKbBKysrPHyahk RkYRyl6HEqGUErJHvujv/+h+vR9cr+t6egtYOetfp6GiouKmpqL6/1sTfuTQ a0HVsxXziW01K/nqO4LZXz/U8sAJkxtvvZeA0LgmnhxVKwo7jbOvmJZcCAHP m4lpTGdA0C4ySS45kpAz7nbbtVYJth56RFEWswjfwmI0j1cCRLy9IXsk8iVh Kdu26xETAUI/HHJeTaoj0NSqGW9Ya0HKZ6T2tbyVwEE58NWq9jxwfdg/WbnY SxCcm3XoYr8IR3UqUwSOfiLw0Fpt8lbqwef6BEa6yAlCTvSFs30kfaj/KP/+ yN4pguhhxeBQJkNIMF7b25E0SygrEGxTrr4CDwgNlooSSwQlWTaWRWtjEGuN nHxTvkZoavxPn8xqAkqdYisSs/8RdC7+TDKrNYUtAvXptEUqRPncP8pmaw5W DVpU7fp0yNy2QaCV3RJeyEk3bPLTo+/LhTe8G4hw9P3JxjAiE5J7236Fq5IE 8Oup6M8INnQvFDaWwq9BsAzjeJwQB2rQrUrtIlnBWDIldWXPQUTDIa5aIGcN n8vV7iiKciM8nD0eyGQDDZftgqOSDqPwzEOBFt9soFE40j5G+Cjqvv5IUKH6 Oozq4EoWiWOIXZz2PXvUDbB0yCZ/MhVERkte9nPWtpDS9KU2uPwkSq3+w/hB 0Q6abhxxKVQQQWO+Ni9yWO2BXHRe+cuMGLJl1Fs2rnWA3PSYpeuLUuhZX0uC TOxN0BCR7BuOl0ELScoKzLaOwL5Qzh2ofwZ5CQrdb2J3gqG/LmVp/Aqo7nca f/ovJxA89dIqX0oJUZWyN3k2OENEeJsKK1EFNR/xCzpY6QKRec0RKRGApqhf U2iPusIFobhy9T51RP9j5cRiuCuEGsm8kRLSRLrFDh86SG5Au8DYfHcPRk5R +dw1HW5w3B2NZERpoRjXCQey3G3o79ZgzxbRRhR5I+YAJndovuPIPJCoi9Z4 Yi2dPN0hrFX6R5f9RcS101Fi9s0dDDXmqY8I6yHzZnV9uWoPmHzw/WCwuD7y feqTe/z4HbCeLMjiUjNAWeGvVtii7oDzLcEhaVND9F1PImnG2hPS/FQI9WVG aO8Zu1+fuj2hWWtiM37eGAkfylVsVfSCLzoaJnXyJsjxC9doFutdWJE1p2r5 bYZW7ekEjGrvQUzsulz+AgmZbrMtqp/yhjC2DumG3muoIYavUSLXG0YuBnXc qrZCYa/kru2J8AF5/Q+c7Jk2aO68pvTijg8YVZ8lamVcR/pjl6i/uN0HpoSb vvH5N9DhPfbZFaa+MKEiab/eaYcCkj1cs7p9gfhYqP3CnD2aEgtUj9TwAzwb L6p68Ca6Wti1IH3AH6o5opnsAm+hY71TMf/b9oeu2h2WWmtXROGe8/onFwAD MvqCLFxu6IH1MmnVJQAuKAr2S/a5odm1f1JfvweAVuB+H259d1TFx91X3RkI a4QDj41jPJGdLX/Ni71B4DYt//ezoxfiLT2RnQdBwJN5Ze3ZxbvInyDjGlMR BKINpuL3j3kj7Zs6++3SgiHDzOt5LJMf2qq4/NdiKBhYgtXvkRn80Ysd468G bCHAqf9veCbWH7HH2ZSeDQ6B7fAp6ouFAWi0+v7lQ46h4NLqe+nyVhCKoglW ZCaHAkH1iUx3cjBS1w0XoJ0Ihb3V72VuK4Qg8nji4h+DB+AcXF15JSAUuex9 GduqHAav1WynLJQeomN6VXfrPMJgXlmPsrXwEA2m1F0rKwmDPPKoJF1xOFKS aJPOOP4QAltUdB1FIhGd4bc+D8ZwkPm2jz5ILxolZXOynxiJgD3Tzup2Qo+R ePTzUs39kTDyaH2yL+kxavLBl620IuHphl38/P/i0ayxV0xmeSSkfzIVM1yO Rxosoyw8kY8gNd7fn28kEc3ey2VkVY2GoT3afeHUT1CAnUqxxO1o8PIO9a2L eoIOGg2e1y2MhqLIZLMhvjSUlUzb0swQA6UuPwp61NNRx21ZOhrPGDgj/Cb7 dHYmOiqaEuhzKRZCQxajdEk56HfW9f4Ih1j4etZzZboqB1Uekjn2JCQWNFaf uySw5KLzezoaa2pjgU7kjChfYy7ymNiiWheKg2NxV+n5Tuej9kSSnyvVY2hn T7fS1i1A8cwSPf68j8F1TqAkvKIAEYP/HomRewzpZ6i2l/kK0YprXMMLx8dw cCCIE60UIv4Lzdsznx4DuffbbZaSYuROK+xzozQeWPXvlj+1LEFKokzTcx3x MO7mlFL7sQRRX1644jEVD3Vw9waNyEsUlVF9Kpg3AWRcK5OO5L9EBYrak9kh CeBUfE6qOq8UjTg7nP9ikgjY35mFp6kc5SRefGXjngh87rPOhfQVyK5eRnA2 KhFijaKTxy9VoBWG/7Y33yVC3EoL0pyoQCzkiFIuySSY9O9S2qavQhqjz7gM aZIhfmyq/vu9akRPGxsycjgZaNVclZU7q1GPiMeSlXwy5GfGxBOO1CBzT9VO V8dk2Dy7POrWXIPusHf7RQ8lg16n3Ig+dy0qOjc/1V6UAq2tugxtP+rR/krp SnWDJ9Av8bLYdl8T+qXV3kjv8gQuiLHbuUMTevvZqrsn8glo8AyHbdxtQk5U 8T8tWp+AgWzguN2fJtSus8Z9TzEN0rb95dZH36Hgb699y/jTQUEslEO2rwVt sBLOHZ/NgHaGhbwH3O2oJ2fU8Dd9Jki2aPo7WrUjsqzHtdITmbDzwXLmY3E7 umJGvneWmAmHvbwNCNCBysj0z836M8EmrDXV37kTVWVM0Z83zwJj5jCzhZ/d yFm2+FagRjZAtJHHpkA/ogiNCixcyoZHsglj6rr9SIGHecjCIhvkn4Rfb7/T j6j+OakpemWD9uSFqMzOfhT3QYZ14Xk25E8cTCR6D6AKs9cvLbhzYCezo4X0 g4I2AtqWFRZy4JGuz0j17Edk7r75lLydA19Wb7oF8H9Cb2+ImXMy5gLt+gWx WP1P6KHOo+b5E7lA53G4KbTmE+I5cDmBbJYLWfIn63vCh5FKwSc5zve5YONS kk2jPIICun/enU/Pg6ZOhj6FgTH0Z21p2+dZHkxJjR/S5RxHpvw7AQy1ecAf HDpVc2UcnXHhDD/xKQ+MvU8xkofH0dR+9VQz9nxITijxm3SbQLpXUl+/D82H ozveSyUPvqKDo7r/ZTqT4XfbWa33lEkUSHfVT8KXDMa3TWRP/zeJ5sWtaWsj yXCcAvy9At/Rh/t3GYcKybBFuWae7vwdefOTeZm+k0HPg1gRxvwDTVj9U/a6 +hTkLcZj6vSnUNF0qY+eegE4qrq2XKedRpy/z7GmXioAmYoWv6unppHf7/Hs SYsC6BVxXr1vNo0MZ5jf37lXAEOhmv7XKqbRzqz9/vTyApjgTNwfZfcbGSwI kKdPFMLh8b00CZ9n0NZabE8gQxEwmdVKcU39QTfWha06uYogcHyYNYlrHvWt v1k5IFQE98qEWXR15hF5Y467ULMI9OuKB66WziO9TW2bHp8iGDp9QYEKFlD+ NvVf3vkiIExNF/VwLKKLdG7HKgeKQc/HaduhdwmVPp/7Rv+1GF4PhqzLzSwh TmP7XPM/xZBiqPOHd+8yGikkCdL97xlwevltSaksI7tLl04aqD2DGX7flrDC ZRSYKi66WPAMBMtvGWyEraAqqZ/SEr7PYXgzXEfAbA0dsTBXzxcugf6Nq7OT FzdRuEpZH5d8CbQrfy3kuL2JVnnprSJRCURFRHy2TtpEnZ/LA29blQBjuVTb 9YlN5H2VsVk9rQSkj0Tgxdv/oVkRi+Pz+14CmZ3CIpO9hc6dYCJHeL+EjA+H n1dw/kM0hx2Km61K4TvHUr26NA0+Q3oQHmRfCl9DRGL5MA2+kZdnr+FSCr+c lH7Rm9HgdvFxobf3S2Ez5rMsSwgNfqxqmFebXApDfS6fB4ZpsCBRLb2suxRM pZizLoXSYq0c9ugspTIQ6nRLFpuhw5HCtW4+7OXAcmhDNuTHPkw584CxqqYC WPlK7S/7s2AhmtTM6eAqoB3D5UkuHDj6j/qClXQ1eKmHpCQsH8K0aVIqQ9Sv gXu8POp1GB8+o51q0tFWC98WOyiR4wL4/oGU03tv10PUZc/ra7wncG/OGL0y vIH4p+QIQSoRnP7UvMvU8y0Eynz6MvtPHF+1nONIIDXC7PiHwI9jUngpXlkz BjWBLssrOVm70/iQGUVPkvcdeIi0/pFek8WNAWzmbTTNkLw1cfPnvAJel09C +0aaQbEsot7glzJmdBo5tLekBdJW2NIC/6nhfLp3P6kTWiHa//7p/Vgdt4uu JmTdfA9ATNg4sEcTe5S2q6sYfoDpfYLMP6gR/vfKYihZoQ3GiRKj/5i0MOdF Ze1k5nbYrxkcPkKvjV8Q6mriV9rhjugrvKqpgyntD+jPdHbAdYv2+lKHC/hT LxvEZ3aCb46CcGDCJWwlr+qxGNwFF6h0jh/+p4c9JSrCFk274XLZqfIMQX3M Htyd8kejBxbnQ+SbbA0wb2UK4T1zL1jWBJpUJxtivl9FL9c9e2HmpJiAYssV bNXx6MnJmV6o+GkoTM1ojB3XElbJRn2galIotqhwFdf0OXef6OiDj1IMlabe JnjVsYA3RLUfIqtOBUm+NMXrl/Z+ki3oB9vlRma3VjOsMinL8YN3AGjkRY9X /TDHuCG8/seDAUj8yPBQYsICg4naaOviAAjpS6Xgt5b4llOFadzyADBMOwyM vLPEqUGiwxarAzD0+BWD83tLvPL84NDKxgC8J+jbRndb4gKa+Z5jVBRwIZom vRq1xKzPMt/5slBAW86uPnfDEo/tUBXLiVHAv/dj4LAkETNyeorQSFBg5eP4 ExEZIlYQmXvaJUkBqSUWkqcsEccZDOfZyFDgn5neGKMKEeOC0ow4RQqQxfeS uLSJ+MVlq7g/WhRYHKb01FkR8f28d3fJNhRY5efKOBxPxO0X11QNblAg5nd5 069EIj74V5iGyo4CidaiQWUpu/kLUeEmNylglM7YoZZJxGNrV58wuVHgxr7K w0pFRKym/afOzW93z2ergeo3RLwzx0V1NpUCoa9aeOt/EfH5ZJ3mmScUKDbb /iM7Q8SJGr5hyekUuCU5NVU8R8SSSZNsS1kUqNpukYleIuLdz1Eg/ykFpi60 V8tsEXFDnKYmYyUF6qW2k9z3kbCfvFPox55dm1Y4rHGR8C8TeeGqPgo42NK2 HOEhYT0fqvb4AQqQHqtMEnhJ+GhjHLP+Rwqs5ykahfORcNP5V/GdYxTYGNDy /itAwnSWVLmNcxQocmK2shYlYUf/NkLWPAXYiOrS18VIeDAnbsp3kQLWIXYW NuIkTP4pKKqySgEG1sViU0kS1nLVLq3aooCIgrrkSRkSDg+Oe1PMOAhJ7Wn/ k1Ik4SWy2bVw5kEQHhMWpVUiYbM2QVp71kFIrdy/3b9rcZZX+CTHIBBnjX3t VEi4K2mkK4tnEPyU3Xnsz5Kw3Os8Z7/Dg1Awfm6HH0g4Y/TWfssjg3C8S5R2 YNdOAlRXeI8Ngm6qCpuEBgmzFQuOJogMgv32gsoLAgl7dc3ddxcbBFelHhlN RMJf56v4DSQG4WF3mOHArsvOaFuzSe/2BznZfMckzGPMvmdeZhACzvlN22iR cODdEXLXmUFQ0jzQMr5rg4Zbv8MVBmHFp9zo3TkSrpuQi7RXGoTWW+1XxbRJ WJCWSvKcyiDUsKiqRu468kRbz0m1QTDemnT6sesVrTjXPTAIf51apeTOk7C5 gxnHd/VBmBW3Cbi/65ZIwcomzd396x++1+xasmTOKBsNggUpo/fXrhP7qjb8 tAaB/grjI1odEv4/JSpMKQ== "]]}, Annotation[#, "Charting`Private`Tag$16015#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.8309314891881013`*^9, {3.83093220630945*^9, 3.8309322077304583`*^9}, 3.8309324858780947`*^9, 3.830932753903061*^9, 3.8309471312446156`*^9, 3.8309471645327644`*^9, 3.8309472168501496`*^9}, CellLabel->"Out[95]=",ExpressionUUID->"684cb2de-7731-4339-98e0-a0a3f3fa6ce2"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV13c41l0YB3CRymjICJFImVnZSbdxTtQbUtGQGZ7Hng0NSlZ5y1bRS2b2 yCZECpGGEYnwjF8iIySJ99df5/pc9/nj3N/rXGeI23uaO7KysLDYr2Fh+Tve v5a2nllpdtBjeITzVNwXPcvvHlFLeQqwQ9eIW/H+ZcPOrvfFlXm6oJtkv3Ir McdQg6+Su5rlEFzbxk7NTGwxDG9cq5eQZwJvppXL9yT2G7qp59RoyR2HhUOa T4P/EIbx3G9PPGGxBFYXbh37xHnD+tGF7wK9Z8CrKZiRILkGMapEI0LyrMFJ 9FTI+wQOFH4ojScA7KD0qIlDtMZWlFxabq0s5wC5SkxniT+CqFi0LY/gd4SU kqAlncc70YvwwcUUFmeQddlzfClhN/r4YwpZfqPA1XW+Sws+cmjCmi12U68L HEuXW68kqYxY2gW+tDS6wWDOKRZlfjXErya791qeB0jbcCG+BC3E/3bHAeEj XlD0+rKJZ7EuSgl5MuYP3tDiypfwTV0fyexXuf1OzQeUFB7rTrsi9HS6Vmmv nC/Yxs+XbV42QgeyUF/4Tj+gvDJ5wzvxD3p1tusajd8f2kzGNzmkmqFjPKcl gesCRDzPX7y4ao4+vRxtT2K5CB5q66QK4k8ip6tu3j/nLwKtP27ByfEUmlZe 2Hb82yUwWmeRzOF9FgUwA+sLv1wG9vyVXb9qrNHaRxyOnL0BsMCQqeyQsEN3 zWO5nF5fAfSkaVs2hwMS3CBa+rzxKkinvrpwgNcRyfsqrV7Kuw6ObzOaz8dS UYV0TWZ3aiAsRt+vO8XthnZOie8RPBIEyYzbrW/yPVBuRl6HL9yAXi4e9mBV H+QZOJ0iXnsDNG6lVMU1+yLVM2q+XWo34fKqeVYbxR/Vb24QkpMLBk6RrrqV n5dQ8Djb5MdM0qX2txTHApBRi1Fj6M5bwLT40kRjXEXvA947jfKHgMpEZfyO R0Eo8eQ27aioEDDKe6Ie3nIDWSlZbdTlCgUnpr/s+d83EZNOf/qAJQwy5nbW p0WFoPxG2bBDV8Jg6CVd7NF0KPJJ8jwzPx8GzhMTllo24WjZ7BfLsW/hkEcc sgul3kHP5XS7VxwjwFl5Nf0N+78odF1wdv6XCNB+YpnCLLmLttRxm2zovQ2U AT2Bc6LRqCfhmHiF2R3QyrZxY+eOQQ+9E+YcXt8B3uI1WnvZYpGk1M6khsZI iJAs3BLDFY80Y/YRF/LuQjCLnUNX+AMUV5zmekHpHlRt1LfeM/AQTb/hmfIv vwcTF648H1ZPRt3siwE1NlHQLSM3o8mbgiL1e29UU6Nhxn70gXVhGqp596+B Vn408Jld/KkYlo4IW8Re/T0aMlS+7Pd2ykCGgWXhVb4xsG7nsk+aZhZaro25 V3ktFm5d2W1oqZCLZI8cPqbRGAvXS4jMgwfy0KmBNbyVrHGgyCt68uTxfFS2 6JVQERYHLzKtaU7xhchNzfRReXQ85BhJ1A5Ul6CHL9bZqHXHw7PnDf8etSlF rcfrd5YLJIDvmbA15RueIkmfvRllSQmAxel3o5zL0GAhV97TzEQI1/g90GhR iTh1m932EYlQv53DWUy0Cml2Big8lb0PN7gNmruYVSju29eS0qL7EHfXzODE 7Rr0j3RrVUn1Ayi+Y/tHkb0eBVQGBigvPwArT9d626l69ARr6JToPoQAj67U g0MNaK1jVkNx80NQzFPqFaY3orrHt14WdSbB1QjGI/HvTWhcSSdccUsynPR1 aoi50IwEG38YF5knQ+gmkbTwNS+Q35B9Z2FfMmREfj4nJNaC5LfrdReMPILx cTYx98uvUFLcn5G8+RTIeHr1fHtRBxoeutE4IpQKfjJRDiqWncj7x9qoSc1U 4GMxDBFe8wbFiXApsl9Mhfi4nfuvWXWhAY9t7qo/UoHlv03y7ELvkDOv0teY b4/BlUPbQkChGy1KPa36jzMNstqvK35M6Ea3ddTDc2XSIMnn/ss/LD2o0FFH qsk5De79ebZ4tb8HzVUaOc6MpUGhnkdDeFIfumFlN2I6mA4+n9pknzl+Qlu9 acVnf6eDgkzHvUb6J5QR4hzkLJwBlTaC1MPOg6i10F0s8FQGdGjYsi55fEab 1gScK+zOAKl7IqfXRg+jpMyYfu7OTFD/dH1v15ZRVP69+V3bs2xYYmPvqNZj oiiemmqtwWwodRO5bPeQiVxUix/nLGVDejcjnvaDiXYGJHtHaDyB9uXJ4aAc At1m9+cxLnkCC+XKX+TExpG1yJ5jrRk5IHFkmX272iTSPCiipdmcAzV+NNmv SZOI136r+JORHNgin3vzMdt31Jq9Mh22IxckXLc4d/d8R/v29UUdup8Lh23r eQv1p9GGw+FvX97JA2uR1pOfN8yiUbfrVeq5eZC+fyD0tcEsenbPLzWrNQ8E l3MZaoGzyKfH1iuUPR+2tPNMBv2cRZ9ttbbgwHxonxASXZ78gUovjpu2+BRA eFAGMGbnkVXmP13Np4tAom/vSR+bJSRy+uiu1oAiKGKtFd1RsoQ+c5tc7Egq gpedk8mubL+RtZ+pWM9nsn7brH4y5zcqFs/R+KFUDJKHal2TV5ZRyXRe2Nry YnggdPLDllerqOxuiZTUsxIIvSJU8uEbK44jSo7ldJbA7jZLNR0xNuynX3pF bqgEEucyhf+Ys2HVhdIuxdUSsEq4QITXsuHyc2UXNfVKQYSel/Ymai2ukK98 ZdxSCtO8ew7p/7MOV7fXObt1PoVm5Vlr7Q2cWOD1lojuwadg/Ma+ZUSfE/u9 Pp+rM/EUpBJfdH66xokVOrgnubnKQFTd3qZ1jhNndFr5FBiVQVD5SGUYgwtH vV2++r25DLqveEs09m/ElF6dGK+acoixqJLkZOHBL3ujnn5sKweRKfeEPAke vKuP1g395eCW7RR7CfHgob7IbTyL5WBGBHrG3+HBJ/oHk0vUKmDUnct9UGgr hsGr2bPFFfBiUYGrQJcXC47W1fllV8L5UMfyhhx+TMgK8ElVVYKucbekaQ8/ rvb1dO1vrQQfWnU/7xoBfIZdQlh3vBJSGX4nDpwWwEnSYRfX762Cq8xJ463c 2/AOz2MqD0urQNc5Mf3dFUG8a5me3fCsGj4enM3kuLUdzxkeXPV+Uw1LcjLm 1hXb8Yt/71tIDlfDLW6DNePEdnxe7Ah7BEsNVMR1xWeZiOAs/WJ7c4MayAvv 6CoXEcXSEQGi9NYa8OPmfKXWvAMrCGyO5eyuBcPD82tWRcTxLsbjBQ9aLVRF u2mJaoljwQrVMx/maqH3nuENi5PimNXijHgyfx00ynwwEb4rjnviM4v2WtaB w9cOdSaLBL7Kr9NhNlAHMNqTf/+bBG7jo7InfnkG5nDHwKVHEp/nbb64a7IB tN8jVp7f0rg3Iue9+3IDjNkI5WZvl8GSLK0Cg+yNEBQlL2KhI4MTLhR67+Fv hB9HGs8uXZPBAQ5XpGr3NcJ/nDkKtqyy2OAAfyzNqxFKq7fLpW6Ww93TRi4a 3xohvpJHhbl/L16wLBb8PPwcEgP18u5MKuEEVWl1z9lm4Oa53Rl7Vx1/+cKn 2zjSAoc8g+X+hOvgGm+VTvNXr+Ciwvntj27o4aktv0Tke9tA0fLqgXRzhLsC VS1fPH8NNxnSBJeYMeb8I2ie3tsJvGVmwU1eR3GPtUJ380gXaIeKjmR/NcN7 jKxS39HegqxosvDYijneRMxXnJ98B3XuTZMvDU/i11Nt+pa095BcSbzdameJ K67PKkxOfQDik+Ur9cen8dfAp0PpC93AvcLFuvTqLJ4hCtlqvvXACX3t8PNV 57BU/0q473wvZK21yRGts8EqyhHBkZN9QHRG97A22+KQ33l6L798BKkxHq2o RDu87ugu23SiH0T7WbnUvOyx1bqeH8NDA2DUNxT5S94BD+NPzIavn8DjnIDN p3EHnPvrckrj1CCUsE613Eo4jw/zHe/YSfsMXbWf3WtkHMn9EXRacnIIVj+M LlfVOuLaBuJsGG0Y1CKKf2VoOOHuR3NRIa5fYLauTXo10wnbiolJCk19geho F5t3PM64r5vhPUgdAaNZ1Q1Nrs6Y3vnRc+b7COzZaRoCTc7485KztLrrKAya Fj3T56DgX7bN+lz0UZCav8R5CFNwPqfxRhXqGOwZblf3CaRgiYRzzmKuY3D8 hEmBehAFPxD3ec7tPgbSOrtyl0iHaib5M73GQJjVWOPGTQq2dZr8nHxpDPZu 0EoPD6FgvqbowvXhY5DzDxoOukPBVy4PmH7OGoNJL4XubYkUfJhwjQmnjYGy s8I6Zj4Fd4no7UthjEGUtNrm5AIKPnFMoLucGIPg7/KxZoUUfK6mkX9sYgx8 5BK5q4oo2CuS/8GB+TFYuTLeFlRKwYlKDSmz7DS41rkt9lclBdMubS2wkqKB tlrEzYgmCg7kqH6l5EIDA3S+V66XggkP/twDbjRg9xWWqydt3u0dediDBgPl vhxmfRQsmSJ77LwPWZfIdvD5SMHtqskDiQE0WHFXiykZoGAB28DJlds0EPef WxQaJvOrQLydeTR4/NHvdyyTgj86vLemTtKgaoN2otpPCubRFWI5PkUDllC/ 1HTShwVtH+vM0EDnq9ERnkUKruuYHNs8T4O6IL3Qb6RT1TioFcs06PnGEp+0 RMHU9eDLxk2H9AoVlfE/FLyUWxD2SJYOlTedTPXXUvG+kDnpMHk6vByba88g 7Wazv91LgQ671ipNrGOn4iHeNm5DFTr80Vfc2U666SotelyLDte86Mf+WU/F t022J2sY0yG7pGfxICcVb58NL37nTIe4Nn9t+mYqtvePuk+j0iFPff86wy1U nLuYGPTTlQ5qWpluaaQ1V7PMRL3ocOD6Zk5rHiq24G6Zplyiw5r0/jtvt1Jx zJ41yiwRdOAs1n6bxk/FG85eLlHIpcNC0daQP8JUbDYU9EAvnw4H6d4/TbdT caJd+I0ThXToLHzBkUZ6DyXxWEApHfgTpjchESo28C+faakh1x/AlxoqSsXX 780on3tNBykWHbZFMSqeb6aW3pmggzOhtBwnScXcdWdPX/lOh+b/grf0kZYs O8riOk0nv2i9PYK7qdg8Q9nk8BwdeP7j8ksiXXjr19cNy3Qo4k1hfbSHip1Q hHgoFwNe3v4cFi1NxR9fPokKkmWA5dtpRT15Kp6qf6jhJc8Ar1iZ3Muk11VG DtkoMMAZj/eXkFbN9pI/qMKADwUJZ8T3UnFUmGbrHy0G7BpKpy2TNjZqXQ0w ZsAv3pn9WYpUXNPG9PCnMOBx0OnlJhUqrpi1tTzrwoDsYfcbM6RLtg8c1HNj wN0Zt2axfVT8xL1jy0YvBjgF11y/QjqRp6Q04yIDKkeDehVVqdjvdMDCh1AG jPUeko1Uo2KFr9zXVTIZ0Mk4bMenScWyW0OdBLMZsGGA1qZNevf+VZOVJwzY uPTzhy1pkX9nxNrzGVBI3fFvPmku5d7ndmUMkJUN7AMtKiYupbBHNzOAl2o6 eU6bitM2qPw7NcIAA/mE3a46VJw/4Fq3MsaAV7Nr0yNJV+RnftvIYEC+h9dg Ael2M6HD8uMMsFNiuzVFevY+y3rqLAMMvYLzPA9Qsb5MV9AoKxM8rcLCHHSp +J/fG4pn1jLhyBqewSDSFp36wyzrmUAcrph6RNrFu+KAGBcTgpHYyT7SMdWP ls7yMiFweOOOQwepeNTYza9nFxPkb7/rEQYqntielU7bzYQf9idUVUkvTA6/ /yHFhMb1qiePkuaMOa68VZ4JcZJDQ9dJqwxofzdRZUJh39Ntw6RvunBQWg2Z MKYdZhKnR8WROgaJfZgJFsKsEzmkEzZde8kwYkK71n7TBtK5pdOS7EeZkFHV 4vyV9PulvhG9k0zg0znO1NanYvE7WWdrHZmwPu7BsQ+kl961G2c7MyH+yC1l GuluwSmNWCoTvB1ejsyRDs/S4HN1ZwJ71cYyfgMq/v68tUPYnwl7zAclT5Ku Wxw/EHCLCYu8cXavSScc3CzvFMoE6mnXc/2kPUP3CZuHk/M/pMgzSUvwXV2Q iWQC+aBCrIZUHKG4sag/lglbx92o6qQtnBR3aqUzYTawITWBtFLB8U27M5lg iEXHH5PmmLu4vCWbCRVKnJwFpOtuNH4kcpmwX9bxTRPpXY+ORd8vZcJbj3mP CdLLY/6Bt8rIfhtSfRZI98o+dPeqYMK4XrgJCyLPp6pRY6MaJsy9ZdzjJT39 wZd18TkTqrdN6mqSbhe+Pz3WzISdJ4I59Uhn2NUNdbUwoSNka7ExacuptbXZ bWR+gasRZ0jXcyb4Wr5jwvdv1oEBpO/oVdEqvjBh6PWj9KekK6bZOAZHmZAV Kj1eQ3o0xXTvGjoTHrT9ZG8irb3C8D/ylQkcvxvqu0iP1/Cv/zLDhH3N/+l+ JS3gYifHPseEZKMZzSnS+kIFprILTJjfdYxrnvTDi4b3/ZaYELGYo8WCqfiw qq8MBxsBFn/WvuIjfWGs/qgCOwEnTFkjhUinxXD6HF9PgJUgu/wO0kvTj2se cRFwUfvJyh7Se1Inh5o2EtCXxKMiR9rcVIuN2EzAvvtb9RVJ5xa8PaLCR4DE 5su/1En3Wol4WQoQkKZZ/FibNCs3Je6qIAFPPCWkdUmfcVkdfClCgHIr5Z0h aU4pBY+zuwnYnZn32Iy0eu/lmCApAmLg86HjpO1DWioyZQi4K/y+6yTpmjGr 1am9BBT5j4WeIc2IebKLX4mAT4d+VFiR3qo/d0hbhYBli4J2a9IuqXeibqkT UD4kmmJPOsG0ryxHk4D40/2250k3rUj0v9EmwMTHeIMT6e8FHn9+6BDQlPYz 3pm08LkacaGDBHTf8CJvLyrG3Ouwrh4B92YMnFxI+9Qec3EwIODUUfZcV9Lt Ql9LCw6R+eaWfHMnvdCq2vfemIBQ295xD9ISl4J+/zxCgECbVbcnaROpDjFR EzIv84knXqQDercZ6psRIL6kRPUmnRXiQHE2J4Dn8id+H9LvVYsiI08Q4COS VvTXK2NLxSUWBGwuN9DwJS0bi3t6TxGw41JYwV9b6Mf8+n2GALaJA7x+pG/O fBYVP0fA+sv61L8uTJXRxzYEaK+9VvzXA6b+Tq52ZN5HaF//et1q4+0oB7Jf yxsC/qRVCrmLyh0J2DXsp/HX1udOfRhwJiA9YuXoX9/mzvi5SiWgVvH22b/+ H06XiWU= "]]}, Annotation[#, "Charting`Private`Tag$16061#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.8309314891881013`*^9, {3.83093220630945*^9, 3.8309322077304583`*^9}, 3.8309324858780947`*^9, 3.830932753903061*^9, 3.8309471312446156`*^9, 3.8309471645327644`*^9, 3.830947216883171*^9}, CellLabel->"Out[96]=",ExpressionUUID->"d2da570b-6dd2-45d8-b70b-bcc895b954be"] }, Open ]], Cell["\<\ Taking the derivative of \[Mu][r] provides the energy density \[Rho][r]:\ \>", "Text", CellChangeTimes->{{3.8309312180051537`*^9, 3.83093128196686*^9}, 3.8310979264869037`*^9},ExpressionUUID->"2c8d2f10-3f3d-439b-89c2-\ 60997a210176"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"Evaluate", "[", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"Soln1", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "21790"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"Evaluate", "[", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"Soln2", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "50000"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", "Orange"}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.828440787553176*^9, 3.8284408068291655`*^9}, { 3.8284408857897725`*^9, 3.8284409439534674`*^9}, {3.828440975997558*^9, 3.8284410287666063`*^9}, {3.8284410919731655`*^9, 3.8284410952196207`*^9}, {3.8297213985807076`*^9, 3.8297214019755907`*^9}, {3.8304171733183804`*^9, 3.830417177504916*^9}, { 3.8304172132876854`*^9, 3.830417264746383*^9}, {3.830417301621832*^9, 3.8304173214884853`*^9}, {3.830417554341835*^9, 3.8304175579518347`*^9}, { 3.830424714560136*^9, 3.8304247551810007`*^9}, {3.8304271663734007`*^9, 3.830427205465722*^9}, {3.830929879654232*^9, 3.8309299205619135`*^9}, { 3.8309299715354457`*^9, 3.830930092977273*^9}, {3.830930202101287*^9, 3.830930248314577*^9}, 3.8309302976066957`*^9, 3.8309324730639577`*^9, { 3.8309470747635775`*^9, 3.830947094832898*^9}, {3.8309472399246426`*^9, 3.830947240109371*^9}}, CellLabel->"In[97]:=",ExpressionUUID->"bdb90ed8-ef96-4158-ba67-1d7a53e0b353"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV1Hk41VsXB/CTqW7GNChU6JSIupVQpsVWhi4hJcPRcZCMITIkLlFeQ4YO 5/BDIUPJeM0kpMFByO9ooNwipGSW6xbvvn/sZz+fZ/3x3et51tqyjEsWzjwU CqUWn//uupgdEvVULR1tLzdDzxYCrVCzP75okAR37nqx/9yyqMS+1aAIq3Jv 4z2ww4vbzmcIqcCexVPV7tg5Q76XfRqOweJN5Wg37E/RiWhXFQDD7zKfK/Zs tktXvJA++P/oUnTB5mnQtlpyNIDz+ZbLTtgbyc0fGQ3GwCw65MfApk5+c+sS NwWi0YV9HluSl7EsVWUGrdrHne3+y0sw0emlW8AKbXDwHLai9NHIG0KWIPW8 Z8USu6KQ2q5RewbWdre2m2EfOyImMuNoBYEy57X/wD5pOsaybbCBAYeyPXrY 5LtXg2IudsBv25CmiW3n0iT7TNwehHpEqlWxVZs5Z7ZW0WHYzOKbAnbwDVia jXEAinqpwC7spj+q07voDLg5ubNDCvvE2+yhCCEnyDhANxfCjrkjEUH75ASK qsPifNgvneOp6rXOwGhWC/23mUBnZwNdJx1dYB/tncUXbBdBszmrBjd4PrF5 vhn7Ye/TlENJ7tAzS+Gvxp5maagLu3jA1Jusxw+wA6ny11rFvWB7kfmh29ht O8Kub6nyhgBlEVE69uiaepJXxgc0J5QuWWCv+zy/eybGBwqZ2kH62H8Uub3o oPvCYOWOWHlsUu2scLiQH0hc5cv78phAi5JJ9l4BfrDPRdbyLfbWlY5S209+ wHZVKH6Bbdema6Fa6w8rb0Ro+dgjZsqsr44B0BLuXUnDXnDlkz3bEAw2UUvQ 2EQgm19iM7oHrkK4+ebae9hNidtblHOvwtCkACcOO7pG1YE/NgSkHK412WJL 87tmV9qEgryGzMT8IwLJ9Ywm/vbrT3CgTZhswia3TQauqoaDcGDm5cVGAt10 nKMveIfDcAeovMH+trj6+8eRcGgzPHsjHbt6+7be2s4IqJst8ZTENnI/ueFi RiQUG4Qbr20g0M9K839o/ZFQFZixc7ieQCUrVh9Pi0WBSGpTQhO2eLJTuU5k FJjE7ND1wx6svWYu4XED5B4Hjb+rI5C3QFnSM41ocE7jGKfUEoiVvUl890As 2AxSLzRVEUgpobgcbYgDdqXP+0Ts1pAT5gyDOIgs/vsnA/ubVWDinb/iQOfX PhUBbD2RQRHJuHgosL8faViJ68G5gqJaCWC+0F7SWEEgGcW0iJBTSZBnknjY sZRAE3edX8W6JYFVsV+FInaVxCE5IioJMtXK3s6UEMiYv6OlriEJ5EMPyYZh +//9k/JDPhnejhcxU4oJxEmlh/lQbsPy+jOiFUUE8uPdG3KhnAknlMLp9wvw PikKfZnsYMJq5QtdF+w15tNn/EeZUCkj1k3FvpVVeyBSKgUqmgsms/IJVHjU aDg7KgXmtI5pJOQRaOCSm/F761R44Du5jZ6L+xt8uNWShw2BM5YLrVl4PnmT ogak2ZCRsWxzBbtbwX+WocYGbY0xDwVsuwCtTh8PNnhEZabcyiTQFfGXYQn9 bGiuqVm2zCDQA8OpUc6DNHC26dvyKo1AG6oOVumeJuAC/XNePJNA4waclnXe BEyMV6gcwG5+x3jZHUdAGN3Goec2gbwozDHaMwJ02MeZG7A5Jxe3BR/NgJrK eXpCEoEiP9WHVuzMBCZbMC3wFoGWRPUNd33LAqH6+jtrogl06UiRZ4ReNmRU DY18D8LzKT8oO30qG0bCvJfDsNUlhftptGzYKe3TIIZNWfXSPhqYDf9IcXQO BhIo+cUh0enibLh+S9TC6wqBKm3ry2jbcmDty/dZb3xxXnj7nPp0Dgy3uk96 uuP/+OVY0FTmPTC7eUUhwxb3/6U8xEy3EDI/hei8USGQKZ+vXFVfEZT+q7Y4 so5AO2h2unl7S2HILUOi5l064pF2K2pjlMO7RZfJzbnpKG5vg2+I+F9QoyaY uNYtHZEqNwWr6yrhnID3BYZyOpLnSb/zJbIa1jb6XnYfTUMJ33WnGQdrYSkn zdr/Thrizfhds39NPSSMbJ0ONklDKkbp1h3tDaBm2TK28oONrm1OOyxw+RE0 nYrYMJ7LRj05H9ZpwGN4HMT+U0ifjTIL7LpsApohLzz0N5NRFjpnP7kxhd4C JdwvzdQQFpplaqDE462gHfz9iIMoC0nYkmb7pZ6As8LPwbm8VNQSLmbXztMG EsaFn5wOpKIfaqzjawfaYDHromhTYwoS9BqQECh9CnvfsmrzDVNQHt+TsTUp z0CwdUUi9RkTcRQXUu66P4fPfJlgZcRE/uUcXU3LF2AjNTx0/tFttFpD62er t4Nv6OtH/gduo02mGkZsYQ54PKKGbStIRiX6jXXMeQ4UUXhtf4kkI5Jzc51K ZwdsqWItzIUkoTc9YsC80wlTy8VOvV8SEUNNy38msgsE98tUXzyeiAKUK6Nn bF6Cw70roe6mCUg88mXad71u0DDXWy/xLR5JVaXpPxfugaLIk0UNKXFo+/iD sh8BPZC51mJr2LFYxOiIJ/Z87YH147tF5//6H/JYTFnIP9sLoyuGHNOj0aiu 99LL3R298K/JagQ1/gZa8CiUitJ6BUdG7q709EWiH6cE3hwpfAXTriJSX2Wv I83hIxs/S/XBYJ1TaJRyODrRFPPo880+SI1dz7vbIxSBtfbgs5k+uBohE7nn cDDy9Kq0SZ7rA3LO/EH7zmCUfl3xLW2hDzQ0WLkMoWA0X7ylf36pD4ztS576 fw5ChTxT3XIUEiQeGTTtYAUh0Yd3noSKkPAs3vSS61Ig+rBCKVLdR4KP/etp 6YoAdO3ek6B8JxJa9FRvc5f9EMd0Uev0BRLKrUsVYz/7oS3/7OWhXCTB2dRL 5PceP1RicivG2p2EosZLawzy/NCHxXOEkC+uhwntvGfqh7SNvjf6hmH7aZi8 zryMVia3UnTSSTAaMj9Tp+SLjNkn274SJPDmViqNbPJFqXqh0exMEqq+135Y +OmD9rOGxWbvktD//qx0Z6cPsocS2bwCEpYsZk+oufugpmSEBKtIuHJ+oZOV 443C1LxuvO4m4fRJhbL8755o3Fptb3UvCbr8u2V5yzyRWQiFw+wjQWHT8K4p b08k05IsbPGaBPd7tQUeMx6o1biG2fmBBM0TMvy539wRnz0lt2WSBHvTV0vR L1yRx5/t+nenSDAMaI05HO6KuDnJo6EzJIy6rwQrHXVF+WNURc0FEhxsV/Rn 8i8iAx+j8uqfJHhrH7NcG+SCYiKTHxcJcmFa4VNnwZQTms23dYgR5oLxL9ZE cJoTsm2n8rqKckHPuEyZT88JKYnUnNizkQvDV4sWJ245oi7WQNddSS7Uibhs CtjMQKr19y6FSXPhQKn61ysVDihr0HOD/Q4uyMQKSdJMHJCXLOWMlBwXAo+d sjkVQkdiRdTBFAUufFr2TBq7TEOBXZPX/PZx4f6W3kfmEXbo41T1ztPKXNhv FT7OjbZFFSpGjmIH8XvKfmuJCbZGklbi/FOHuPA8yebcecdzKCJoIL9LhQvZ Ab7nLuhYodNNnhMx6lzYQaetbuBYosa/VeNcj3GBrLm/O9L3NKLyUvYbauK8 w3Jjt9dYoLjd7d17tLmwoBRTs83HDM0bJPvwAxemrHJUg71MkJ2b7cYRXS4o XZN5uO6GEXoaR61qRVxY1HgmnzWmj/aXTp7NPs6Fh+9I2tX3Wii1t3opzIAL Q20vFPvpW9H/AbuakAQ= "]]}, Annotation[#, "Charting`Private`Tag$16408#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.8304272059093637`*^9, 3.830427246798009*^9, 3.830929923015419*^9, { 3.8309300346377587`*^9, 3.830930101808797*^9}, 3.830930216343092*^9, 3.8309302488021545`*^9, 3.8309302980963926`*^9, 3.830930477758995*^9, 3.8309314993751745`*^9, 3.830932210558031*^9, 3.83093248016224*^9, 3.830932759315299*^9, 3.8309472416248274`*^9}, CellLabel->"Out[97]=",ExpressionUUID->"cfba662a-8982-4f89-abff-4eff51c21a01"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0nk0ldv/B3BDKlNKMhdSKlO4Qtzq07OTqST6pZDxmocSIl2VEFIcU+RR JFNO5inHfGUsmYnIkHPOY8osU/zO94+99nqtvdb7M6wtYX3b0JaFiYmpmXH+ d8f7peyilxqcq9b31nKtxZHxLzfSOlkeanICUpwZbm3rzCsln4XDT7n67RhW 5SvlKmPSAg4voWFzhkNqdpx/SdaH1I22YiOGXVTeU07LGIFEX5epJsOxXO3X MpmMwaPPsuMvhqvGVn7x95qATFi4gBjDtI8HQ4PI5pCEL8ru+l+eVso+X7CC HvrqvukaHCUWFJsrythAHM9yYyvDeQebycQBW+Dsn770geFPIYOrSUz28Pz4 m7fBDH9bnNU0nnKAhCThRguGp81Zo/f0OgGZtFWhzPCBU9JyfmQ3iHAvEeip Zrj90BlhvTvA5pbhl8xwUlDmTy9wh6mPLkUODBfOlSvIyXgA/VFb9GwVjs6k a/aFiHsCK8emRg7DjaZtfuMHvIC7aKDIkeHvDWMtOJM3bLxYF+qrxJHdvy7u v5e9gVCL2BnK8JziioDRlA/kbpI+qTK84zW7LUevL2BN7UVhFTiS9VDY9iE/ hLj73Y7c5TgqOU5J605+BGPFpeNpFByJz0pICeo9hhj980oaDGelkr94gD84 nZnUNCtj7JenWkhGJgBE/s/TyKcURwGTrDPf0gJgParX/ncJjrTrtWueigeC +sIFAw+GO3077cYOBEEHgjdWxTiiU6mFr5iCQViz45RgIY4+1EgHaz0IBi1e fN6vAEd38dsmy8vBIFPkHjCSj6NNgzWmq1MhwGehLJ2Yh6O9FVz6u3ufwZaZ ZNhMNo7Uov4i7pHDYSHz3PfVDBzF5KU431OIALLDDEWY4bmv+2a9iiMg2+AG oZaOo262VV+KBQnUB1TknVJx9Bzr9S9zjIRX94LuJicz6pVHRZT6RYPJiZCL ZvE4ktbTvapaEw00M9/TKA5HNwaY95eyxIBsUKW/1EscFa3eeVkSHAMayqF8 Y9GM/3nqyuviyFgw+KV5TS4CR4M5nOTCtDjYs0OgmS8IRxxn61z+IuKgUW3A pDaA0X+rr3yhdDw8L27Qc3rC6H9qIr8gNx7cwl0v5z/C0aXjTR/zy15B7kAf bb8vjireBjbktuJQX+3IIuuGIzzmzyh5OQkiKZVs2UY4Gv7hXzMqlAxZgXeF 2Axx5L64gzSjlgwVA/2CJgaMfFHOk2zeydCQcm9o/RKOBtwEXJUXk4FUG0kS uIgj+/0KE1FTbwE3c9KqUsWRv5nV6JXBd2DTE67UIIgjXvfxPNONd2DgLX28 kh9HqUH2j+2FU0GSZUkinw9HTTmuYo9upMLHyqajpL042sPseyunOxUOQ3OI 9G5Gv2lR/VytaRDYnk7qWElAxb/qOporM0DVW/T0bEcCIu2jlJ0ezAB8X0VC TFsCclLOe/t+PQP8Q3zVVVsTkLhvonuoaiYw2W2oejYloGdsXvt08jOhIyjC qrUqAZmLSl1tSn0PEn7aAn+yEtBu3ZD2hjAyFNdxthv7JyCztEttdTdzISyx nk9FKgGJ3rws2eSbC0EtzBnzhxPQEJe+9xc8FzJGbPWyxBh5nlfEeoZywer1 tXZeoQSUJ/FedVEhD0SqFBdqOBNQ/hw5eEdxHnCHjrREzb1CReH5x45V5kMk cyi74MdXqKylwt6ltRCSU9i+bp59hQTHKio8M0qhKnn+sgMWj+T5eaI5usuh uP6ttRlPHPpnf5235Ew1YBws97QaY9GKcZ7g0HAtzLC9PrwaEINeKh9Xub1Q B089Dw+qCkWjkRG+szWj9TBsuvR7uiYSUdyVWg0bG2FYI89U9TYJze5dE5Xt bYYvRQmWQpzhqO2RsvGn2s8wM2v9pNYnDHH8ETR819sKlttNS1rNIajHXL67 brQNLjp9jTLSeoqktM2SO8bbQX90bZqZNxDtIZZL/pnpgFPWXNrQ7Y8+zzZj xuOdoP2azfVS4yNU8nBBfma2Cwb4/9PumHyAJh4V/ni30g2HTDmPfPbxQfNE DitlqgdcglRNDpC80LH+rRCP5V6Ii5AJ7KfcRUqKoQHPZ/qgnufVmXzzOyho g3y+YeQbfB7r/U8z0QXtvCxp+Y7oh/y/xRBzmgMy29mzOPxjANLyhG9ZW9ui 4Yvf6dUT36EQ10vY0LZGWWv3k2pmB+GyY/Y450ULpMtn9EV8fAhGyD6bCism SLDk8c0jMz/g+XmdN4U/r6PyasI0eHwYcBaT+9axRqj79RIpyHkEBKjhRxqr DZClmNgRodkRmO8RYdY4egn1ddPcBx1HYVRna1uiTQtRW7/dnv81Ci+Gok66 ViA0tG5/XMV5DFxM4rXlPACtWdZhnNQxOBu2dzFEXwN94NDhVnL8CQZJ3GNs +1WQLuEcFTL+E8SNy2yNRhTRI/ayRgWncdA49fPzyqIM+mbTae44w/AuUU66 +1EkshCS12FPhe/1clo/dMWRtRcpftyRCqb/WvFeUxFHWatxj387U6FrzKjs m4Q4UttONzh4hwoPA9iYDi6Ioetc9XMOPlQYpFW5XzcQQ1FSzIpMoVTIle60 0uI9hHab3s+Xz6JC6NvC5GayCFqucywIm6ZCbeyb/jIlAcRVYXrzwS8qlAm9 aFjiFUBHii4zOc9RYfElaY/WIj8yTFXU112iwmerzHDFIn6UE7g2sXuTChV+ WQ4HVfmRnWaoxFNOGnT/9cRZ5/wB9K0hk/RYmgZCc8pR5Xb7EaWZ7ublQINh 8aYHnQQPKlmwNDZ1okFBYrR6YDEPyhcZOHfehQZ3HHbesHjCgzJdv+zlvkOD runKh5GiPChuX35BqjcNsp9clBs33IM8b/qudD2lwVeRrQa1Ri4kP8H1UCmN 8b5WffbKV3YkzfvUTjCDBlG7Z9z4k9nRUY1t/a1MGvDIe8Ww3WVHoi/mxVo+ 0GBKKSHWlJ8dcSr21loV0SBUfOQS1XI3InyS2CLraOBn05hg92cnStmt9GJ2 lAaKwaftvxvtQB8GnCu2ftKgr6XajPvYDlTyIW2Km0YDwZASwmWdFbUYCOnK TjLmPxURW/SWFS3EM+1yXKDBdrQVs+0CC8JOtD0eY6HDPoq7JiQyozEdF88e STqs3KzeiJHcwqZF0t+NH6XD+371Hxd6/mArM8Odi8focF5TgqIf/AfjiDJS 5JWlw0nlfnRnehNTGlD/pa9Mh4/LRuyTlA3siRO7Q9MFOqTXWBYUO6xhEmHp puW2dEiMj80u3bWMrXe06GTY08GpwKLvUPMS1i04qxrtSIdnrw4kdz9bwkLS VfmcXenAcmnhlCzPEvartumLsBcdfCSrk5+LLGIVq5NnfAPpoD3PonEQzWPX 7U6Kn35HB+FNKZ0efApTyDbaczSNDob+IwEBSlMY+5L35t4MOrAt/pPU1TyJ VfjXfCOy6LBxmw0zWZ/AJF9fjYwvoMOblUq/XTYENtflwbJaSwdyydV3YkZU LOz8x/GSEca8fx8r77EaxkrmWNkHx+igrijpb5P2AxtLuiLHTKWDq1oHa9rk EKa+RfPSm6DDtX8tFXV9B7FJyoFdI/N0iJRMWr+S04/pKnucYGclgK6rOrzX uRu797PqsjwbAcB9X7elpQtLieK4a7SLgPvUpmxT2S5sfe4t5TUnAX+zy1N4 lzuwrOx2PSU+An6UTU1YqLdhHMfk3UyPEnCDZzo8OK4BU+m9H/X4GAHamZ80 4mLrMeug+pK0EwSMn0vR/h73CaP8NNuelSPAMFCgS+79f5hTchgpUIWA7lOm cQLMVdjLK31F79UY9VVl/J+iCuy/rcP9X9UJOORRrmgRQcGEb1EkhM4RsPPh yQtsF0qxFqGJgmwtAmwKBPc0SuVjK03KfZ06BPzhevj9qGcudtjn8cZvPQI4 jYR/M+d/wHx7BS5gBgR8dNxpnHU7A0sPsnGwNyRA5+RX5pcLqVincu7z59cI OGwrrqATnoJJR1/s6b1BgApff+Kb44nYdSxqbcOEgE8PI6K6mOOxJ/NDByVu EfB509TqJH8MlpN8ArtoQcCD0Nz9rI4kbOCKl52zFQG6bqItFZuh2M7tmmck GwJM977wbCgJwJRyuHKLbQmILOixkRT5FzO/daNrwJ6AO+vFRSZSd7FnXKm/ tx0JMDDMV24Ns8H+H9ECN2Q= "]]}, Annotation[#, "Charting`Private`Tag$16455#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.8304272059093637`*^9, 3.830427246798009*^9, 3.830929923015419*^9, { 3.8309300346377587`*^9, 3.830930101808797*^9}, 3.830930216343092*^9, 3.8309302488021545`*^9, 3.8309302980963926`*^9, 3.830930477758995*^9, 3.8309314993751745`*^9, 3.830932210558031*^9, 3.83093248016224*^9, 3.830932759315299*^9, 3.8309472416547937`*^9}, CellLabel->"Out[98]=",ExpressionUUID->"5b3b1cbc-dbac-4acd-a8a4-1670dc1eb7fd"] }, Open ]], Cell[TextData[{ "Lastly, we use the equation of state of a Polytrope, given by the relation ", Cell[BoxData[ FormBox[ RowBox[{"p", "=", SuperscriptBox["K\[Rho]", FractionBox[ RowBox[{"n", "+", "1"}], "n"]]}], TraditionalForm]],ExpressionUUID-> "030c9784-b784-4291-a4f2-182e57710e1a"], ", to plot p[r]:" }], "Text", CellChangeTimes->{{3.8309312913191476`*^9, 3.830931342084425*^9}},ExpressionUUID->"fdee0d0c-2f0e-4f51-9fc6-\ 7f9cc219d2e2"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"K", "[", "n1", "]"}], SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"Soln1", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n1", "+", "1"}], "n1"]]}], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "21790"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.8284410602769623`*^9, 3.8284410873550406`*^9}, { 3.8284411322837963`*^9, 3.8284411333569107`*^9}, {3.8304175775647373`*^9, 3.8304176499928308`*^9}, {3.830424756828061*^9, 3.8304247953473625`*^9}, { 3.830427083428463*^9, 3.8304270855657344`*^9}, 3.830427160697663*^9, { 3.8309302662389708`*^9, 3.830930292667816*^9}, {3.8309324371207886`*^9, 3.8309324654471684`*^9}, 3.830947064027842*^9}, CellLabel-> "In[100]:=",ExpressionUUID->"d8ed661e-b2cf-4563-9ec3-6227c89fd5a5"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV1Hk01dsXAPCbKb9npjJkuF+Ra2h8xkLbdI6hTBWZpaQJUVIyRMJDiUyl 4sr0KCJTyMuQMg/3e1V4SS9RyJCpnvh93x9nnfVZe629zz5rn0N4+Np6ctBo tC5q/bc/i5UVr1HQ2/cqUCfI/jCBVxWYI69rpaB6MEP4PzcsqqXfrFWBksIn 0naUwx83u93jV4fL+z/GHKKcPex/3q92Dyhy99vaUv4Yc8toSwXAxkyfYCvK c0yvzhv8xtDkJsS9nzJHrb798jEM1yS5JzBlMXLjiEetOXglX91pRFlhavJ0 p6glXL4XztajLMXp8XNzhTWMD470a/1XL+HAvl53W0hQDNfeRVlFWicyiv8Q /G+l7Icy5bIChda91YdhRnhUXJ7yHg1hwdlj9nD4vFOyJGULy7E0p1pH4Jdc /4iHMjnQNyTs5QwGNmsmK4cI7OxVT7SIukKeS7TeLGXNF22HJSrcgdctzfQd 5aAoWJ6LPQp6a5POHZTr91fe7XT3gGW2bU89ZfSOORzBfxyOTlT0MSnHZopH uHw8DuWTikeTKHd53lDQrvYEvG27ZQRlu7lLp6aOeUGcMbeJO2UvPuvv9rWn gSgXyttA+VHvy5TdiWdAcJimSqM8k7ZXW8DrLERdcxKcOEjgSwpKIY2iPrAd c83WU26WDbu2qeIcpAiKK7tR/ryuhuSk+wFPTVSOCWXe0XnF2Vg/EDw7GqpK eX/R6dft7v5gKWNkvWBL3YeWnUA4/wUILNY8Hk55USrR1SfwApxw1ur3oCyx 2l7i9PEC1A4z8o0oOzcb2GpWB4CsgcAJTsqfrLelTRwLhPLytCNXbAi8cIqL sKsNAteMPpED1gR2/CU8a7DjCnCkfuQgKNffkmnY9vAK9HsPaM5bETimSvMo d1wwnF+t8kqnLM19ilnuGAoBDq7f3lgSWL7n863//boKuklKqb8foM4rOXVp TTMcGgT4a/7dT+DoY9/dF86FQ/MFa6KJ8uTi2s6RT+Fgt8xbY0W5Ukayt7oj AsLjCje4WxDY7IyFyMl7kbB+46cAFzMCr5Tb/HDpj4RWla99kpSLV+1HDgpf B3X/7vNsUwKLJh0v3Rd5HYZ/OoWbUx6qDrERPxsF1aqBHaqYwOd4niS27I0B tR32Ku3GBE5jbhBVHIyDttfLhiH7CKyW8LjUSCQeGEm+ugzKjcHIxgPHg9fO b0l9+tR57S/dynwaD1F+yvaKlA0FhwSl4m9AusCfek26VDzoIZ+QXgI8/RQc 90GHwHSVOxHBVokQsynPj/k7gb9mefbFnU4EcmuUnDblCvHd8hnXE+Fi1lPV rt0ENudub3hWmwjEMN1teReBAz6s0JaUkkD/5p+/m+wkcFuqe5gf7TYwncQe vFAj8AVORvCJ0mTIKW9t11ek3pMK/5ep9mRQu4n6mhQIvM5m5nDA52RYv/BW 35TyzQfVOyI3pwBE+5tbbSFwgY7ZP8zrKfCbxbiaHUHgQd/T5n87pILLoVAV LEP1N/RI4hBHOkSIcHtVbqDmkzPx+qB0OuyrUjJnUO5WDpjz0EoHK0+RlDti 1LwF6nX4nU2H1Ug/jyBRAl8U7QpL6E8HnbeTQ+rCBC40nf7cVngHdKNeu93g I7BIxa4Kg4MZQFMa5+xcR+Bx3NbAey4DkvbftJal/GLAo6s7PgMu3XGY9KER 2IeWPObSkgFZTeUigmt03GaxKBmkcw/kFd5uNF6h48iPNaFlcvdhxy0e8YRF Ol4WMjbdMvkA/Pdsz2B+pWNfjSLvCEMmbBo+2fa8h45JpSFixooJthovlOe6 6VhbSqDfxYUJo9ct5hUp09Z89HUuMUHtC26P66TjpNe7hWYeMyHrKyvCuo2O y51qnrhIZsPXXyxGfRNVL7z1u/ZMNjh7iw+rVNJxeNfY5en7OcA/ZjdgeYeO C7+UBlsbFMARuRMaWw7SsSWXv3wFqwhmK99bXeeiY1kXZ4NcRgmk0ne3LnvK YQ7p00XNHqWw0W7E4EyOLI5n1PoHiz6FU7fkuBgjMphUj+arfFYOx3O98K6N MliJ427ml8hKELx/QUFFVRonfDOY8dhVDalrndFSaDPmvLdTt39dDbzlcXia bCSF1c3uOrS31kJI1vG8EV1JHLLxzu8855+DjnGRvK6BBO7Jfs+7F/4C34Lx 4nMq4vh+vnOnY+ALOJ3RqveT2ISPuE6Jpbg3wMP1rVpbaBvxXPJeo1smjXBb 4rvSvRExLO5EWm/f3ASa38pym9miuCFc2LmVoxmkuYmRf5+K4CWtNJP1g82Q L6+RwJ0vjPl8BsV5Sl6C7Y8OsxAjIZzL1TS2LqUFjp67bT8uJoDbVBZSss68 gqLIB6tWonw4oLTNQPfQayhMLYqfmeHFa1Uu/enarRBxp9X45ygP3mC51yxd oA2e63ToMPi4cbFx3bPk+TYwtOzuTZDgxGRbNK96Rzs8X29c1WS/Dr/tEYbk zA4w91A6FeG+hjy09AJmIzsh4qrSHx3T/6LAbeUxs45d8CuStyV0eBmJRnbd +WbYDYnMg3/VVi2gzRV3jF8J9ICPz95XktNzSGa88MlSYA8YkCFtNi4zyKP9 RsbWiR6YVLmo3xA9gc4upizk2fVCAPcJ6Vq+MfSs17dLsb0XVlX63OXTP6KF swWbr+v1gUOXZ2m6xd9oyYrnrUZBH8Qomw5kVvQj3X80xEY3s0D+u5rgA98e VKA5vDFFhgUPn3IJTDn0oA2xMRImciwo9RxdNjXuQZM7B2Vy5an4uopMJcke dD/0KsNTmQWr7P2ya1HdaFWyXW9UkwW3Gz+w1TS6UIO1+8lRGxZ8vHIkYiGn HaH62Oej0Sw4+1tDzj5WCyqL5za88QcLhFRvlMmWtCBZp6st6nEseDv2RE08 rgUtLgV0X7vJAvbMo1OHjFpQ7q6jI0QKC0KeHqDTKl4irlwtbtdsFkgv/3CU ud+MmuI+7e+vY8HsnvUDgVcb0XZHt96Qehb805FdE+XWiO4yBg4rvmBB/mSj Zol+I/J/2e16oYkF8e9O8h/41YDk12rOibaxIGEoOKzuSgOK8E9MtnzDgovL k1e8Q14gcNAfapllgUpZpbs34zny9il3TPrOAsFzu1OWxurQ3Wsq71wWqP7G Cq/8lV+H5h9v6p9fZsFJi9xCXkYdKuCY7pankeARuKMhQrUWCT3KbAoVJGGn 9ZZyBf1n6P0qrUhTlYQDirMvtZMqEN+GQGWObSRolF7puOVQgbSVp/I7t5Mw XTktzCAqUNLBdznHd5MQ3/IpYkNpOUIFpQ+SdEiQLGNZfmY9RcU2HknfMAn9 pnysQMUyFJLTdDnvOAkSzySm/WcfozbLRb2DJ0j4UG9vlJf6GG36weCgnSRB ZvepMAvdx6j4wM1YhzMkrL+tHjYZ8wi9XzySwe9PQp/+Hxk3lIqQvtm3Ov8w EqINbWiMoAK0OiVB23eXhBmf6L1hgQ+RebpF80QGCeFGi82Wqg9RqmFoTPp9 ErxMa5dSh7PR9rR/hOeySMgzjm5NNMtGrlBM5OZT+X2rTNS3MFF9kpERXwUJ hXPjvWkD91GYlk/Um24SpAbZb6yep6BxBy1GZS8JBS9UYVYjBVkH09qSWSRc XQlRHypJRvSGJAHbNyQM+95IS8+/jRrNq5I73pPws/3ATGteIuJypT1smCIh o968RaItDp292mqcNU3lG6a/nBqNRezspM+hsySofPwtPI4rFuWNKajoLpCw LljMTd08BmE/s9LKFRJe8uXItS5FotjIpL+K+NjQ6xkvX9IQgubynI7GCrBh 4NPkisyRYOTUqsB5SogNNfK3p9cvBCE1wSq0VYwNyLAyM8DwEupMG+zMkmKD 1vkv/PLbziPNmhzfMGk2qK7etfiw7IceDHmLuMqyoRHP5xW3n0M+BO3wZnk2 iE5Y6x4S9EbCRQpDKcpseEP9F3KVx9GlzqmQC6psqJpJFMh67YFGpivlDm5j Q+ob3iXGpDsqUzc7JryLyseOCxrpcURS9qLc07vZ4D//9593I+1RxOXBvE51 Nog02CuwXA+hg/XeX2O12XA5NKImTv4AqvugGX9qDxvK64zV3N5hpMBJ226q y4Yj+WvWW74ZonjF1u6t+mzgmdDT1WLponmc5McNbNglNjdSXKiOnE87iX0y oPpTs2LvWVBBL+MVKhqN2PBKu6/kYqYM2l4yZcc0YQOzRtdvJY0bpfZWLodh Nnx2qz5qEpJm8n85aOPv "]]}, Annotation[#, "Charting`Private`Tag$17159#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.830417644228922*^9, 3.830417650599887*^9}, { 3.830424796616983*^9, 3.8304248162551427`*^9}, 3.8304251710897136`*^9, { 3.83042708600373*^9, 3.83042711560786*^9}, {3.830930257839388*^9, 3.830930293284442*^9}, 3.830930484236395*^9, 3.830931503022853*^9, 3.830932212385791*^9, {3.8309324379690466`*^9, 3.830932466211417*^9}, 3.8309327619236116`*^9, 3.8309472590117626`*^9}, CellLabel-> "Out[100]=",ExpressionUUID->"6e31bb9e-eb7b-4287-b61e-188210cf6c4f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"K", "[", "n2", "]"}], SuperscriptBox[ RowBox[{"(", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"Soln2", "[", "r", "]"}], ",", "r"}], "]"}], RowBox[{"4", " ", "\[Pi]", " ", SuperscriptBox["r", "2"]}]], ")"}], FractionBox[ RowBox[{"n2", "+", "1"}], "n2"]]}], "]"}], "}"}], ",", RowBox[{"{", RowBox[{"r", ",", "\[Epsilon]", ",", "50000"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", "Orange"}]}], "]"}]], "Input", CellChangeTimes->{ 3.830947055829245*^9, 3.8309471018133416`*^9, {3.8309472523969564`*^9, 3.8309472526962147`*^9}}, CellLabel->"In[99]:=",ExpressionUUID->"7d0ee97d-5672-4f79-b898-c5598aa39a92"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV13c4Fd4bAHDZM0rKSNySlYRI9S295J5rrwpFomHPJJIKZSaJQqUyI5ts KjJCJHuPu69x7ZXC7/7+Os/nOc8573ve9zzneQ7muofZLWYmJqaeHUxM/x8T H6RyUMtNzv32XIm1uITBWcy6x2zkKMKsa+fIJYbbO7oKy3M04N5FE7wJw+p7 ynkrmXCg+XMzTofh8FpWzfgcI9BW41s9w7DriU9Vp45cAI76veyKDL/i/X0x i8kC/KSsG8QY/kpYnd3bdwUCg1lV2BmmVIhHhOTYAKpJMqRfZOyHS93lD3ZA KUzY18lwUnGpjfKRGyB+x/ZFEcOF4i05NKFbMHtltiKa4YbwkfUPTA4gw83/ 3JHhgaU5rMW0I0Ty0facY3jGhiVuZ58z3DsqprebYSE1+aMPctzhQIRVbf4F hn8fOCuq7wkHdLOY/Rj+EJJF9AEv2C8xu3yW4c/z1UpHj3jD6+I52jczDO7s R2x/uOQdoA+aTd1n+IdVxwOSkA+wOjS+VWV4uInQ+pbJF0iRdwSSTDE4+wBX r7UVX7Ddlu/RY3heeXXfhWk/wDj90Vk1weBY33Hd4u7zh+1NSXSeYQVvpW2/ nIfwgi/1ZakRBlcmW5XRk/wI2j1vUXQZlpzDSAvrB0I6h/r0kCEGl52e0+YN QTD3cA//kgGjvvzfRI4ceQxndCqb/uphcI+nWOgDGY/hSb9lhQ/DOo06taGS T2DotNW1GV0Mrsu/y54gFAI7DvN0dOhgcFQy+fNrpjCwsZAAD4TB5dbKh+Hu h8Hv51+ov7AY3O23HldWVsLgEisJd4ThfyZ/mEynw+HGecvjQ+cxOIEaXiPO vkhwWX34XUATgzsZe5x2Nyca3mX5y+FPY3AvC1Nd7io9h2J95rCNU4x6/No1 51P6HBaObOwWYLiHbd2/6loMJD0VqTymjsFFafUFVTq9gMtRImaaxxnxqmOf lz+Ig8Jvxrb58hicvL6eqXptHJCd/mxGymFwlkM7BMuZX0JkglnfDVkMrmTd M74s7CW0EMtOc0sz7qea8bvSF6/gq2DrjBwGgxvJ58n5nJEAQdiiztK9GBy3 Rr3rcVoCKJz69MxciJF/u7/iZ/lE8KsZi1sSZOQ/PVlUXJAIMQr44IO7MDgD 2eaKosrX8G/ene8iDwZXk/KkqaD9LYx0/6hl35bEvX25ic9Z+QCdQhwjxURJ 3PhYUC1eJBmq6P+pb+ElcV5LrDH0k8nQFGXqhyYkcS/38xxj802Ga81+he0j krgh931uqkvJEPB6dW95ryTOQVBpMnY6BQIucTWuNknigqzt8MYjadD+/d26 cqYkbrcXqdDqbxp4fYkw258hiUsPcQh0EE2HMBXxSpY0SVxzvpvEI8t0KJci F7W8l8Tt3OF/Nb8nHaI5uP1V4hn5ZsQO8rZnAFaoK8vviSSudLa+s+VLJphq 38vE20jiYnZVVZ4ayQTreuXcAGtJnLNqYcqnjUzYorByCF2RxEn6J3lFqGdB jGZRw9lLkrhINp9dukVZkKj6MsNDXxJns1/atDn9E7z25BU1V5fEceqF/256 mgMfS07pqvNJ4qwzDDrqLxfAiRf4VL0bErj9lw0PNfsXQL96zas6awncKK+R b9vbAuD1Gjt53FwCZ3PHWKJ3tABeXzBKYdeVwBViPqkvKRUCbi3Y211RAlc0 nxPGWloId3+m9GPXD+BKootkZL4UwXOPtDTV8AO4ytYaB9f2z7BZOt7D/0Yc J0yoqbmTWQ7aSREGM8ViOMW9/HHcPdVg6P3X1+iOCO6mYL3vIfo3OHDPYt/f Q/twqxaFwqPjdaAv8L7ixeIeXLyq7AmPxXpweb+cGJewGzcxsUejFt8IdHTj iNJdAVyVl0q72Y8f0LEzfip7kRc3J/Bnv0JfCzj7lcZlTHPiOh6pWjTU/YRL gt4aVb5sOO5NYbO0vnb4hLcgDQkx43ptFHvq8R2gPhopkYLbQtI61smdpN/w wyTctt/rD9pJWym7Se+Enyc3y08Rl9HPuRYtC1IX7OMb81Q8u4DYY/3fhNC6 QDeFHhOvuIC0VI8sfp7pAtHx7HZOyQVU5ReVIrDSBdx1nNE8LAsoa4cxUytb N4w2CNRGtMyjUMGeL2dkumHx13bcLct5BOpjJw86d8PuwGpg+juLyh4uKtLn usH9i7W5dfM0qg4u4uJc7oYo5h1r9oXTqDbUk3RwvRsawipowYnTqCV69rUl Uw+oSnxImXWcRiPvp1gbBHpAii0y4SX3NGL5Rhh6o9wDd8F0QdB0Cplsd4Xq ePeApUEgJnuKhiYffR5LW+0B/sdXF7yNKCjaDafut9EDF+iveyf/oyAVq+Hn Bls9oC8qstNNjoL8T7BorrD1wrReiu1bVgrippulIaFekIudbouvJqMjVxYd Jo/3gpugRDOzAhm5qSovKHr1Aq2QdOnRXhJaoOWzVE33AvsLjtRIAQIqlm2Y nJjrheNNtr3d23h023Gwg2O5F65fMymUn8OjZSpL0qV/veAqan56xy88WqdY qi7w9sGdHtY8kyg82iIx35JV7AM/GatgLx484sWbN8V79gEHR9/yQ8EJJDO4 Fe690ge2ov4mEy9GUDjz5MyFP30gTvwUFOU3gmhHuk1UN/uA/YnHgMG1EZT1 MFN4hbUf1q8c+s51dATJSplk3d3TD/J/t/Z6twwjeY+UH/eO90NckKn1Otsw UmDTZg/06od3zppbt58NIhXliMdR9H7Y1b+mbd/dh6xqgpwvL/SDfZ7UEYlv fegJzt9UeqUfok+2O9Oy+1D/VReJ2n/9oCzV0ZIT3IcCIg2rl3gG4Fzz9V/L Kn3oB3HX0hX5AeDfnITQ+F5kHf/mupzDAMg7/Gd2xakHhfzN0WyaYMz/abC/ 818Xahs4XEYmDcBHMXpYuFwX2l32QZ5tcgCe3mpszd3Xhd57xglqLwxA/z2e x4eXO1EZ2Z9ct2MQki7L2fTldSJKh27El4OD4DV5Z0BeqhOhdOrvkpuDIB6X L6e7/zdiNzxkm0YbhJW2zcZIjzY0I3jbLGBmEPTxvWL0i22oc6hW+9L8IBTx 2XvYn25DSY42chzrg1DuYtDyjq0NKT95vejMMQRcPj1Xxd/9RNbV/CEq0kMQ diF30OR3KyqS+/ep7sYQ2GmV1e/CtSBr9t6l8bEhmJD7lXb9dhOykcjw5iEO wWTMtNcJqyZke9Jn6QR1CL4tN9yR1G5CN52Flp7NDUFctFTbib1NyPXXpcX/ mIah4udgrnN1I3oQ3zefgBkGeq1hzRhXI3ovPUA3vjkMtPZz23fL6lHyuSy3 +47D8F5vwZieUo9SLf3oH12H4bjw40jfZ/XoY6QwffPOMGRoW/j+uFmP8mct Z3JChqEgb0Pnwp569LVscIojcxhESj584/H9jsbRMPXb5DCYew3IRurVoey6 yql++jB8Uz8VXXSyDt09k0ifWxiGBLwEZkq6DvGqXFqS2BiGMkmluGiWOnRS vGPrEfcI1F3PYE37Uotil74LwZERaJ96fIiuWou0k7PP17qOwMj+2HDNa19R 9p97H2rnRqDU7RpuPb0K7bE5Khm7NALflBvWxyKr0KPvE8k31kagKODti1HP KnTxKS6VfXsE0j4Xyx48W4W29gtlGOwchVFVlcqmvkpkBoXZAwqjsNnYue6y sxJthFJK551GoWgiKiczuhzdnH594rvbKOjsDDhh71uOOowNy+O8RmEAk4E9 bVuO0oVLKk7cG4U3LTppB1XKkVF2UHVA+CisJh3VWuwrQ6nt++s4M0dh3dve P0CqDOntudAmSRqFITFKcfWvEtTZGjakTRuFKEJjHa6iBFkG1dAcZ0bhwaHT LlMpJchh9jBb0fIo0G0n1bx9StCT5vWzmmxjEDpyFRcjXoK+BrwvsJMeg9kA r3Cy12ekTJ6MTXUcg6dSKWrO8sWo4u2BlCbXMdhegojkvcUIzC4UTHmOwci2 5/gUczEy+lbzU+XeGPRhKrHVw0XI+fVz1vqIMVg4HDeqE12E0g3V7hKzxyAj V+EV+1ohEi4LvCxFHwOuyWovobwCpGEeSd6xMAZLmu0RkVEF6NZqnNf48hjw /1fy+IBrASo+kRnx5t8Y/Pu5lpt6pAAZlLdXCvCOw/vzsa3CufkoqEJUdFN+ HPqwiorpxXloqqpkqNdxHMSGDj4I6M1B1d9oVmGkcSis2KGQ6ZrFuF9MLqa0 ccB80VIJv5CF3tQL+4vNjENG57eRwNNZyP+HTmLB0jjcP366tYIzCyU5XJxy 2TEBEVEdX+BjJrLyKJF+KTABZik+6+/JH9HgwzsfSIoTkDWjMcvhk4F+P2LK bFGagDGR85xlNhmoOTAqP19lAlhPsODu6WSgiuD0L34nJkC/V5eqsT8DJYb2 DPNqTEDCt+iPDQ3pyDxaVVjNcALuPXBb/CSSjnreLceEuEwAG5Hz9dWuVDSE 0xyPc5uA5lDlg2M1qWhi4dnRVI8JyMSdmLmTmYroWJnWr94ToLgWPEMKSEXs s5dZ1u9PwP1eB9Qmm4rUNb75OEdNQLXoQ2LGkxT0ZiziinHeBDwx/E5f1k9G yeF9WVcLJkDmo8t/QqeS0UeVQ2suRRPwr2HzjK50MvocWhMXXsqIF6HCP8OU jNoU59rqvkzAUoRVmZr7B7T58OI51V8TYDO5bSBi9B7ZSkhIicxNwHlty+hg uSR0QsNcmXWB4Rp21g/cSYj36jONucUJqHcN7h+cfosq3vy1bFydgP7vynLZ +W8R/96BZ15bE5BhvuRTrPYWfeV9sdbChwfT02trurpv0P4N5p/+Cnh4ee1Z +HBIIloUPj1wSxEPhJfNw8+dE1GzuhfZRAkPB1bUtK8ZJ6I7PuPb0qp4+EF9 vGAkkoh+zlerdv+HhzJKGa9HfgLyp955f0QfD9pvLJnfjcaj/h6K14gTHsLH 3Q9yG79ifCPHGudd8NB2dtycrvoKJd/sE2Fzx8O5RjbajOgr5LjcWHf0Nh4u c10vAOpLtC6YseuRPx5YvApr1YNeItELN4owT/GADgaV61fFIZvO8Xn7XDyo St6IN4JYpPW6X/t+Ph5w5XlPw+VikbRdR+LzQjywvo0NHd4di+bmv0JFCR7a Czpk28gvUKDA+xiuL3hI/dd2qzfqBUo1tlbKbceDq3uX9u3xGERuH/BYmMXD Pc+pDmuF5yiRuzqYMI+HutWzFhc4niMD3LtX3Yt42NGlZulJiEYltXbVpat4 8CNsqIm/jkZPPk+x+2/hIatD01ODMxodev3vHfNOAvi0J9Q/okchu5uSbYJH CdBYG+LM0x2J9qQwj7MeI4DaRrzKs+JI1DxKWlhRIgBiFZdRjo1EShaf9g2o EoD1ab3guGkkYtJTuZF0hgD+SR4+HV0R6MMx7Q0pAwL8Uc0KowyFo9ENB9kT LgSQ1dzLL8QShu46dgaIuxGAm+4nrUgNRTv7TneyehCAGlh68+bPUKRRxOff fZsAH62v02RehqJkh88/Pf0JIPLUZA+nTCi62bPlnhNBgJ2HLSKFzELQdN6r UsksAiiEKvLn1zxGT8S2uTizCTCandJwMv0x2h/haDOXQ4DZwKvXR58+RgY3 /+P4WkCATyuVy95Wj1G+KN7SqpwANWfY2rr/BqPbYQr/XjURIOJXoZauZjD6 Y1uvxUMmgIGgTIjDWCBK9qWPilEJEJY55q7yIxCh6H33FCYJ8I4zxF64MBC9 rHYpMKQTQEC3ml8tOBAp7d2zP2aFAFn23pAvE4jsf95c2cNOhFcvuYwE5h6i LjX2rAMyRPCOveV67mIAumegdP6YHBH+Pnp0XEkhAEneuDJ27ggRHt5num/C GoDcYvL32B0jQo1LT8OB0vuIc9o8KE2dCIbqD/AzwvfRueTMK7I6RFDgv/JD avIeyuXW5VNxIoIQt+t2RbYvOhh/1UHChQjF72OSwyN90WvM7TpeNyJ04pYj A5x9UejJtz5UTyLQJ8Nyf8v7Ilt7+miSHxGszltpSufdRXu+v8jnCGfkd9F9 p2OFD7p/b8h49CMReIOvh1vQvNEi69yn1iwi/MBqOru1eSPHGBbWimwiSGu8 uZxW6I0uZipUxOYTYWfoUbz7PW+k2PtQUqeMCLYeFuJBvN6IoHRoobiRCEYW f5funryN9GguseEkIrhuqh7v/uiJOvZrHv9AIcKnozijnChPdNF0b08pjQjM Kfpv0297oqtVtULEGSI8y484vaHhiTyjhF6fXSGCdtN7LatiD5Sg9O3DIhsJ tH/PgYKMOyL57c6zliFBiJeI6F8NF+SURzX0liPBIZY1vOduFzSLr5mNOEIC 3qIn4ZIUZ7Su56BUfowEK+pvbitEOyMe8ZrPu06SIGFeomNuwgmp1N2qatIh AcErXHw2xhE94qr8oeRMgrQr3G4YEXtEcxfKPutKAl++P2Se5VvIrMcrSs+d BHZiTVPSHbeQ1Ad505u3SfCs3LmeHnILtaomDSX4kyBc4cVMxcpNtNf2EX0r kgQtmxw5+8ZuoNwyrGB7DmN9adaBmd92aO/+1JXBPBI0L1tMPi+yQ4+Ctvop BSR4IUZOtYm1Q2YG5UlMJYz5nYrSARft0BpeVlq1hgR1456mxUO2SIuP99Tb NhJMZoavNo5eQwM3umyc6CT48eF1w2lna7RLQ4TpwhwJso1x/4ROWSM9YduU MwskcFX7YKzCaY1q2uhE/hUSFP5YPHM00wolq3E5lf0jwQH1zkkp2hXkxAHe LLxkuGbaIErwuYw2svPC3smT4fcxReber+boeMiybJgCGTRYRi+ZvzJHrtf+ a/VUJENfU8GAgKs5GhNs4dVWIQP+YO4DJVFz9D2A9GLqFBkkjuf+Erx3CUUa iSWp65LhgtOZ5+qaF5HYYnhhpwMZjisaJ9v/MUXXfWISSU5kSMmJUivuNkXZ 6wmBay5kOO3AV3Uy3xSd3P5oIu5JBlVXavDKDVNkzts47+hHhrBKnjrpLhMU K71DmSmCDBzqrdesbxsjTqt7RYrZZBisEt+UsNVHJmOBrzVzyXCMYMbre1Af JdiFB13MZ+xvbsevStZD0o4Jpv7FZIi7HCc45qKHzvuULjRWkWGxVVqC/EAX PXy+oHz1Jxlyi0t5L5fg0Eq9U/HTGTJsHmDi/+KgjXhrrC7fnyXDu3+G8udO aSOpEkMml3kyTBp+HeXj0UZm6cpGesuM8z+nfH5ecB7lP/kzyfmPDONFA1/E /mkhe2wEJpSHAuodSRo8aZpooCkrJlCeAn1avg28Bhpo7usbdU8FCnBoPHVZ YtJA7OVRY9cUKbDocbzepuwsUs30VDinQoEuvVPCdQfPopiwk82bpygg7GET lLbjDNLVad7216VA0oiS+pX+U6iqheru40iBoD4ersAxNVS2aGth5UyBapW4 MdZ0NVQkNnRO05UCfgtrwWtOaijLrU2Az5MCC6G5clJrqihhV1Fxui8FJh8u vo/aq4ruXPZf7Q6lAHH5x6askwryDF4aqwynQO9UxrihmgpyyXH98SGSAp/F XJ4M7FBB1zdtEl2iKdDA7I8RT1JGpinnT7PEU8COp5XbvFcJKU7yPlTJoEBZ jO53tRJFJL871F44kwL8hqOb9ZaK6PB/20ZbWRRYe2fstnPrKNr/bEGiNZcC tl+PH+3RO4p4lPvq7EoowETd0uCiH0E0vw9sL+opcHa6wMPgghxK5VR5Noen AOVsUdJCshTKHXKp2SJS4LBpiqvdJSlUlpsxzUehwMvtZ5hn3FKo1URET2GK Apc31ymCvofQYiITh9MiBfgu97bUWh5EWnIdgQRmKkiPCItln5VEBn85CxdY qaCywz2ycEMCmbdrjTNxUGHz67GB6/clkLNX2VkJHip8PfRDsyHwAIqtfLdh JUiFd/HKoejtfkTQdb3Te4gKhXzbL8L4RNCM2Mc00mEqCC5+GbFPEUar9PGu JRkqfPONK35wQhhxx15Q3q1AhcmtQn29m/uQytDpWSNVKshK3siT+yWEgp25 HJu1qZCmovL8yuBuFHXmfEI/ooIDx1Wujke7UfzOB00UHSpILXsyX5XZjbKL 56XYDKnwRhV/6Ou9Xahrox+veYkK/ZoqptePCCDM049W1beoMDWz1nEuiAdt dLbqZjpQ4Ze1ke/FP9yoR3hOPc6JCrk5XZkYb24U/lF9j4sbFXAXPsOQCxea rWtuE/WhQoR19NQdLw5Usz511v8JFe7riboMtrKg+HP8CvahjPNfwY8eusqC PEKPi5qFU8Fcff/kn3lmdHBPwKpcFBWOeimWnxVnRhHH+AoG46hgf8l5ri+M CZnbH5M8lcZYz5zypA/7F6uUd2Hn4Qwq+B9m7zV8vYHlWvb9J5BJBb6dOyJC 5v5ga4JqB2jZVDio4+skmb6OPfTO9EViMRWcFd0t3Y6uYv8RfR49KaFC47Qx xSR+Bdsn/8bNs4wKkt90Vlt2rGAjKwi6OlVU0I748sBhYgk73+3NvF5HBU5V Cc4v1QvYVtHEeWI9Fd5XazlWnlzAptvVjHU0UkG34splTMU81mKOtTqzhQq2 O3ZraQTMYb9yx3tbdDL6fX5iIqhtGptoWmV3vpsKlqm8kwIzU1ivxDHjY71U EK5+tltKYAorJS2jwDFIhXL6wct5t2jYp5oVpLIJKhiE1LnKYcnYsnkWrhEC FeI0AiqWvUhYwgfjozvIjH5FWdSspRGxp7coPvqTVFD0G6c57yNgp6qEOCYW qHDrhV3OyJ0x7F5nuyNsy1T4mzTMXntgFKslkmcsv0oF/dCki3Jdw9g3vtqJ dzao0HxecGTfpUGsnqq3HBcLDQ6u6udrNvdg7xK/Giqy0SCR8xGvbHU3NjWW +/YFDhpQX6n+zCnrwm7Mp1S946GBD+WBt9CP31jpZPrYdz4aqOqTLAPLO7Bm xqdYaPw0ENVgmTu00I7Nzvutr7KHBs+yJ0McXrZi+6z3e1rspcHno7zMMZvN WGZex5cBwjSITm4K3nf3B/aK8/ZI034aGH/K9jJ92YANFdHfMXOABgmGFQ9e nqrHFjfHH96FocGoPYumEb0Oyy2j6G51mAahQZ2JsltfsSf67sUGytDgpHpV 8InKGuz1kMayDDka8C6VJYg9r8JWEa23547SwNLh50XniDIsJTbrkJASDQJp lk29uSXY3VrLuNMqNPj97Ayf2GQx1jn5acyTEzS4/oVQ4XaxABtv3F/y6SQN nGZuHRO1zsV+3zo4+Os0DUw7LNx9X3zCzua5by6doYFw8i7+B0sfsaJXqzAi 52gQF//flnhQOhbxsiMNTRocw25U4k6lYm9XmzrfOE+Df9Z1CXjRZGyryGRx Ho4GdztNdGpzErGrzar9XbqM+lgwXtTLr7AH/QL/runTwFu9L+qRaSzWSKZN QtyIBs0VYlx6ks+x/n37tLVMaODxdGvJUzoS+zHkhqODGQ2CQ9XfYQpDsF2q BVFRFxn9vUxZMKwIwm4RNwqLzGkw+9/6+RbvAKx8HOrts6RBo/Sj/Dybu1hz rdg/f68w6l/D1z942AsbvDAqjrnKiCdxrCTH3wmbnyynha7R4NIJ5tIVpevY IWMfexc7GmQciignZ1pi2bdrI2Nu0CBlQLzwgbgxViWft6D0Fg12DU8viH3W xNpctewecqCBrNm3GeE9ythI3vS1bScayCxH0L9aCmP/BzWSVxI= "]]}, Annotation[#, "Charting`Private`Tag$16807#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.830947255262764*^9}, CellLabel->"Out[99]=",ExpressionUUID->"ac951988-e55e-4859-8e34-354ad26f6a90"] }, Open ]] }, WindowSize->{949, 467}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, TaggingRules->{ "WelcomeScreenSettings" -> {"FEStarting" -> False}, "TryRealOnly" -> False}, Magnification:>0.7 Inherited, FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions->"Default.nb", ExpressionUUID->"17b1f048-787a-4397-91ed-78d68f2a29b6" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 638, 16, 44, "Text",ExpressionUUID->"e545fe2c-da2d-4a54-a956-a7c16ced5074"], Cell[1199, 38, 761, 21, 76, "Input",ExpressionUUID->"781572ff-86e6-4646-9d02-1835bd272312"], Cell[1963, 61, 786, 18, 24, "Text",ExpressionUUID->"89461dbf-9dea-4b93-b2ed-0cdc91f1c8e7"], Cell[2752, 81, 2498, 50, 98, "Input",ExpressionUUID->"0a49946b-36c3-4c0b-bc6a-e2dcb6e80d86"], Cell[5253, 133, 381, 7, 24, "Text",ExpressionUUID->"18c06fbb-189e-4b77-b5ea-bbd6346a94da"], Cell[5637, 142, 4285, 65, 89, "Input",ExpressionUUID->"f82a552c-8833-49e8-a84d-0d8082b7acec"], Cell[9925, 209, 588, 11, 40, "Text",ExpressionUUID->"0544e48b-0655-41fe-8715-ea8327cbbb72"], Cell[10516, 222, 748, 23, 56, "Input",ExpressionUUID->"1aee8345-d088-4d2f-93a8-5d38edfa212b"], Cell[11267, 247, 597, 10, 40, "Text",ExpressionUUID->"052d67d0-af19-42b1-89dc-5cb9b7c91fb8"], Cell[CellGroupData[{ Cell[11889, 261, 7471, 149, 114, "Input",ExpressionUUID->"22d57c64-0195-4e6e-9f9d-1c20125c5e0c"], Cell[19363, 412, 1028, 19, 17, "Message",ExpressionUUID->"00799572-913d-402b-87ab-2a60d346eed4"], Cell[20394, 433, 23364, 432, 51, "Output",ExpressionUUID->"b5a6f2bd-6ae8-4d20-8534-93e8a88b59c9"] }, Open ]], Cell[43773, 868, 158, 3, 24, "Text",ExpressionUUID->"4949072c-3b31-4446-af76-84db351c9cde"], Cell[CellGroupData[{ Cell[43956, 875, 4606, 111, 85, "Input",ExpressionUUID->"b9995737-7ac3-486f-aa9f-8e805b9036f8"], Cell[48565, 988, 732, 15, 17, "Message",ExpressionUUID->"0f02107a-9437-4eba-8641-4d301b75c2cb"], Cell[49300, 1005, 31879, 701, 51, "Output",ExpressionUUID->"2f06c921-534d-4650-ab7a-4b965ef0f2e0"] }, Open ]], Cell[81194, 1709, 376, 7, 24, "Text",ExpressionUUID->"f56dad61-d480-4c70-8346-b7ea1efbd56f"], Cell[CellGroupData[{ Cell[81595, 1720, 1976, 32, 34, "Input",ExpressionUUID->"46a7b7d3-fdc0-4fef-962d-8ea6ab7c85b9"], Cell[83574, 1754, 7836, 148, 156, "Output",ExpressionUUID->"684cb2de-7731-4339-98e0-a0a3f3fa6ce2"], Cell[91413, 1904, 9141, 170, 149, "Output",ExpressionUUID->"d2da570b-6dd2-45d8-b70b-bcc895b954be"] }, Open ]], Cell[100569, 2077, 248, 5, 24, "Text",ExpressionUUID->"2c8d2f10-3f3d-439b-89c2-60997a210176"], Cell[CellGroupData[{ Cell[100842, 2086, 1964, 42, 83, "Input",ExpressionUUID->"bdb90ed8-ef96-4158-ba67-1d7a53e0b353"], Cell[102809, 2130, 5837, 115, 156, "Output",ExpressionUUID->"cfba662a-8982-4f89-abff-4eff51c21a01"], Cell[108649, 2247, 6249, 122, 153, "Output",ExpressionUUID->"5b3b1cbc-dbac-4acd-a8a4-1670dc1eb7fd"] }, Open ]], Cell[114913, 2372, 469, 13, 28, "Text",ExpressionUUID->"fdee0d0c-2f0e-4f51-9fc6-7f9cc219d2e2"], Cell[CellGroupData[{ Cell[115407, 2389, 1151, 27, 40, "Input",ExpressionUUID->"d8ed661e-b2cf-4563-9ec3-6227c89fd5a5"], Cell[116561, 2418, 6379, 124, 156, "Output",ExpressionUUID->"6e31bb9e-eb7b-4287-b61e-188210cf6c4f"] }, Open ]], Cell[CellGroupData[{ Cell[122977, 2547, 900, 24, 40, "Input",ExpressionUUID->"7d0ee97d-5672-4f79-b898-c5598aa39a92"], Cell[123880, 2573, 11510, 208, 153, "Output",ExpressionUUID->"ac951988-e55e-4859-8e34-354ad26f6a90"] }, Open ]] } ] *)